

Charged particle and underlying event measurements with the ATLAS detector

ICHEP 2024

Mustafa Schmidt on behalf of ATLAS collaboration

July 18, 2024

University of Wuppertal

Introduction

- Perturbation physics
 - Large momentum transfer \rightarrow small coupling constant
 - Hard scattering processes
 - Prompt decays of heavy flavor particles
- Soft physics
 - Small momentum transfer \rightarrow only model dependent description
 - Underlying event (everything except hard scattering)
 - Diffractive & elastic scattering
 - Hadronization and hadron decays
- No sharp boundaries between hard processes and underlying events

The ATLAS Detector

- ATLAS detector at LHC covers nearly entire solid angle around collision point.
- Inner Detector (ID):
 - Immersed in 2 T axial magnetic field.
 - Provides charged-particle tracking in range $|\eta| < 2.5$
 - Includes high-granularity silicon pixel detector, SemiConductor Tracker (SCT), and Transition Radiation Tracker (TRT)
- Calorimeters:
 - Electromagnetic and hadronic calorimeters
 - Used to measure energy of particles
- Muon Spectrometer:
 - Incorporates superconducting air-core toroidal magnets
 - Measures muon momentum.

- Trigger System:
 - Minimum-bias trigger scintillators (MBTS) provide trigger signal
 - + First-level trigger accepts events \leq 100 kHz
 - High-level trigger for further selections to reduce rate to about 1.5 kHz.
- High precision tracking and particle identification critical for study of underlying events

Underlying-event studies with strange hadrons in pp collisions at $s = \sqrt{13}$ TeV with the ATLAS detector

(CERN-EP-2024-105)

https://arxiv.org/abs/2405.05048

Introduction

- Investigating properties of underlying event in pp collisions at $\sqrt{s}=13~{\rm TeV}$
- Focus on strange hadrons: K_S^0 , Λ , and $\overline{\Lambda}$
- Hadron reconstruction: displaced two-particle vertices from decay modes
- Underlying-event observables in azimuthal regions relative to leading charged-particle jet
- Compare data with predictions from various hadronization and underlying-event physics models
- Enhance understanding of hadronization processes and multi-parton interactions (MPI)
- Provide data to improve and tune Monte Carlo (MC) simulation models

Data & Monte-Carlo Samples

Data Samples

- Data collected with ATLAS detector in June 2015 (LHC Run 2)
- Includes 6 LHC runs with up to 29 colliding bunches
- Approximately 110M events recorded with single-hemisphere trigger
- Additional 20M events recorded with two-hemisphere trigger for specific leading jet p_T selection
- Mean number of inelastic interactions per bunch-crossing: $\langle \mu \rangle$ varied between 0.003 and 0.03.

Monte Carlo Samples

- EPOS 3.4: EPOS-LHC tune including parton-based Gribov-Regge theory
- Pythia 8:
 - A2 tune: Based on MSTW2008 LO PDF set, tuned using ATLAS minimum-bias data at 7 TeV.
 - Monash+CR tune: Includes alternate color-reconnection model for improved baryon production.
- All MC samples simulated using Geant4 for detector response.
- Comparison of MC predictions with data to evaluate underlying event models.

Objects Selections

Prompt Tracks:

- Reconstructed with a maximum transverse impact parameter of 10 mm
- $p_T > 500$ MeV and $|\eta| < 2.5$.
- Minimum hits required in pixel and SCT detectors
- Tracks both transverse and longitudinal impact parameters relative to primary vertex \leq 1.5 mm

Jets:

- Reconstructed using anti- k_t algorithm with a radius parameter R = 0.4
- Leading jet highest- p_{T} jet within $|\eta|<2.1$

Large-radius Tracks:

- Secondary tracking step to improve efficiency for low-*p_T* particles
- Looser requirements on impact parameters and no pixel hit requirement

Kaon and Lambda Selection:

- K⁰_S, Λ, and Λ candidates identified via V0-finder algorithm
- Selection criteria include p_T thresholds, decay lengths, and mass window constraints

Vertex Reconstruction:

- Primary vertex reconstructed from two or more tracks with p_T > 100 MeV.
- Events with multiple vertices (pile-up) are removed

Event Selections

Trigger Requirements:

- Five of six runs events recorded by a single-hemisphere primary trigger requiring at least one MBTS sector above threshold
- Sixth run used a two-hemisphere trigger selection introducing a slight bias towards events with a larger number of charged particles

Vertex Requirements:

- Events must contain a primary vertex reconstructed from two or more tracks with $p_T > 100$ MeV.
- Pile-up events including two or more reconstructed primary vertices with four or more associated tracks each are removed

Jet Requirements:

• Events with leading jet $10 < p_T \le 40$ GeV satisfy restricted leading-jet selection.

Track Requirements:

- Events must have at least one track with $p_T>1~{\rm GeV}~{\rm passing}~{\rm prompt}~{\rm tracking}~{\rm selection}$
- Particle-level events require at least one selected charged particle with p_T > 1 GeV

Statistics:

- Total of 67 million events satisfy event selections in data
- A subset of 1.4 million events satisfies restricted leading-jet selection
- Available EPOS-LHC and Pythia 8 Monash+CR MC statistics are comparable in size to data
- Pythia 8 A2 sample is only around 25% of data size

Event & Particle Correction Factors

- Correction mitigates for detector effects.
- Trigger correction applied for single-hemisphere MBTS trigger
- Per-track and per-V⁰ weights applied to correct for detector efficiency and fake rates
- Mean correction factors provided for K_S^0 , Λ , and $\overline{\Lambda}$

Uncertainties

Unfolding Uncertainties:

- Reweighting method: Ratio between MC and data
- Deviation of unfolded EPOS-LHC pseudo-data as uncertainty
- Unfolding with Pythia 8 A2 response matrices.
- Percentage difference with EPOS-LHC considered

Correction Systematics:

- Fake V^0 probability from line-shape fits.
- Material budget uncertainty included
- Inner-detector material and χ^2 requirements
- Additional 0.5% systematic uncertainties

Non-closure:

- Differences between corrected reconstruction-level MC and particle-level distributions
- Statistical uncertainty from bootstrap method (500 pseudo-runs)

Soft Regime (Leading-jet $p_T < 10$ GeV):

- EPOS-LHC model provides best overall performance for both K_S^0 and $\Lambda + \overline{\Lambda}$ mean multiplicities.
- At very low leading-jet p_T, EPOS-LHC tends to underestimate relative baryon yields.
- Pythia 8 A2 model significantly underestimates all distributions (up to 40% for K⁰_S and up to 60% for Λ + Λ̄).
- Pythia 8 Monash+CR model performs better than A2 model, especially in towards region for K⁰_S and Λ + Λ relative yields.

Results for $\Lambda + \bar{\Lambda}$

Hard Regime (Leading-jet $p_T > 10$ GeV):

- Weaker dependence on leading-jet p_T
- Non-diffractive *pp* interactions at low impact parameter drive observed activity
- Towards and away regions show a tendency for event-normalized mean multiplicity to rise with increasing leading-jet p_T
- Transverse region shows predominantly flat behavior over hard regime, minimally affected by leading partonic scattering
- EPOS-LHC model less accurate in hard regime due to lack of hard-scattering model

Study of ordered hadron chains in proton-proton, proton-lead and lead-lead collisions with the ATLAS detector

(ATLAS-CONF-2022-055)

https: //cds.cern.ch/record/2819852

Introduction and Motivation

Introduction

- Hadronization studies crucial for understanding high-energy collision dynamics
- ATLAS unique for momentum difference measurement between charged hadrons in different collision systems: pp, p+Pb, Pb+Pb

Motivation

- Traditional models like Lund string fragmentation model offer insights (discrepancies with experimental data require refined models)
- Identifying universal patterns in hadronization across different collision systems \to deeper understanding of particle production mechanisms
- Recent advancements: propose helical string model for hadronization

Methodology

- pp, p+Pb, Pb+Pb at different energies
- Extracting spectra of pair adjacent in color flow with difference hadron pair yield with like-sign and opposite-sign charge

Inclusive Pair Measurements

• Differential charge distribution;

$$\Delta(Q) = \frac{1}{N_{ch}} [N^{OS}(Q) - N^{LS}(Q)]$$

• Correlation strength (CS) and chain correlation strength (CCS):

$$\mathsf{CS} = -\int_{\Delta < 0} \Delta(Q) \, \mathsf{d} Q, \quad \mathsf{CS} = -\int_{\Delta_{3h} < 0} \Delta_{3h}(Q) \, \mathsf{d} Q$$

- Studies showed independence of $\Delta(Q)$ from collision energy
- Consequence: Universality of multiplicity dependent on enhanced production rate of close LS pairs
- First LS pair production measurement in model-independent way \rightarrow forecast of future minimum bias measurements

Universality of Hadron Productions

- $\Delta(Q)$ distributions for p+Pb and Pb+Pb collisions
- Insights into hadronization process and identifying discrepancies in current models
- Ratio of absolute momenta

$$\zeta = \min\left(\frac{|p_j|}{|p_i|}, \frac{|p_j|}{|p_i|}\right)$$

- (Q, ζ) dependence of Δ for p+Pb and Pb+Pb (dominant running contributions)
- Comparing Hijing model predictions for $\Delta(Q,\zeta)$ with experimental data
- Indicating areas for potential improvement in hadronization modeling

Universality of Hadron Productions

- Rising trend of CS with multiplicity for all collision systems
- Good agreement between HI and pp samples regarding chain properties → universality in hadronization process
- Correlated systematic uncertainties below
- Significant difference between Hijing and Pythia8

Correlation strength measured in pp, p+Pb and Pb+Pb samples for CS and CCS measurements

Multiplicity Dependence & Quantum Effects

- Density of pairs of color-adjacent hadrons as function of parent color singlet mass
- $\Delta(Q)$ distributions for events with high and low multiplicity of charged particles (Both distributions agrees for Q > 0.7 GeV \rightarrow low multiplicity regions template for *hard* component)
- Shape of Δ(Q) distribution stabilizes with increasing mass of parton system
- High multiplicity samples (85%) resemble hard component of low multiplicity samples with remaining 15% additional soft activity carried by low-mass color singlets
- Further studies required for relation between soft hadronization component and dissociating proton

Fit of Δ_{3h} (3 Body Decay)

Combined Results incl. Syst. Uncertainties:

- $m_{3h}^{thr} = (567^{+16}_{-19}) \text{ MeV}$ (hadron threshold)
- $\kappa r = (66.5^{+2.0}_{-2.2}) \text{ MeV} (\kappa: \text{ string tension, } R: \text{ helix radius})$
- $\Delta\Phi = (2.819^{+0.013}_{-0.014})$ (quantized helix phase)

 $E_T(n) = \sqrt{m_n^2 + p_T(n)^2} = n\kappa R\Delta\Phi$

Thank you very much for your attention!

Backup Slides

Results

Soft Regime (Leading-jet $p_T < 10$ GeV):

- EPOS-LHC model provides best overall performance for both K⁰_S and Λ + Λ mean multiplicities.
- At very low leading-jet *p*_T, EPOS-LHC tends to underestimate relative baryon yields.
- Pythia 8 A2 model significantly underestimates all distributions (up to 40% for K_S^0 and up to 60% for $\Lambda + \overline{\Lambda}$).
- Pythia 8 Monash+CR model performs better than A2 model, especially in towards region for K_S^0 and $\Lambda + \overline{\Lambda}$ relative yields.

Results

Hard Regime (Leading-jet $p_T > 10$ GeV):

- Weaker dependence on leading-jet p_T
- Non-diffractive *pp* interactions at low impact parameter drive observed activity
- Towards and away regions show a tendency for event-normalized mean multiplicity to rise with increasing leading-jet p_T
- Transverse region shows predominantly flat behavior over hard regime, minimally affected by leading partonic scattering
- EPOS-LHC model less accurate in hard regime due to lack of hard-scattering model

Results

General Observations:

- No model perfectly describes data
- Data could be used to improve future simulations.
- Further studies needed to enhance understanding of underlying-event properties.

Universality of Hadron Productions

- $\Delta(Q)$ distributions for p+Pb and Pb+Pb collisions
- Insights into hadronization process and identifying discrepancies in current models
- (Q, ζ) dependence of Δ for p+Pb and Pb+Pb (dominant running contributions)
- Comparing Hijing model predictions for $\Delta(Q,\zeta)$ with experimental data (contours for better visualization of differences)
- Indicating areas for potential improvement in hadronization modeling

Analysis Strategy

• Region Definition:

- Leading jet defines towards, transverse, and away regions
- Multiplicity Computation:
 - Separate for K⁰_S, Λ + Λ̄, and prompt charged-particles.
 - Use per-candidate correction weights
- Unfolding:
 - Iterative method with four iterations.
 - EPOS-LHC used for response matrix
- Normalization:
 - Ratios of multiplicity observables.
 - Event-normalized figures formed

• Observables:

- K_S^0 and $\Lambda + \overline{\Lambda}$ multiplicities vs. leading-jet p_T .
- Normalize to prompt charged-particle yield or event count

• Restricted Leading-Jet Selection:

- Events with $10 < p_T \le 40$ GeV.
- Plot abscissa changed to multiplicity of prompt charged-particles in transverse region
- Statistical Error:
 - Bootstrap method with 500 pseudo-runs.
 - Root mean square used for error