PRAGUE 42nd International Conference on High Energy Physics July 17-24 · 2024 · Prague · Czech Republic

Latest Neutrino Oscillation Results from Daya Bay Jinjing Li MAIL: jinjing-li@tsinghua.edu.cn Tsinghua University, Beijing, China On Behalf of the Daya Bay Collaboration July 18, 2024

- Overview of the Daya Bay Experiment
- Neutrino Oscillation
- Oscillation Results with Gadolinium-capture Sample
- Oscillation Results with Hydrogen-capture Sample
- Search for Sterile Neutrinos
- Summary and Prospects

Final result: Phys. Rev. Lett. 130, 161802 (2023)

New result! [arXiv:2406.01007]

New result! [arXiv:2404.01687]

- Six 2.9 GWth reactors as very strong antineutrino sources(~6x10²⁰ per reactor per second)
- Eight antineutrino detectors (ADs) deployed in three experimental halls (EHs)
 - Near 4 ADs: sample the flux precisely with minor oscillation effect
 - The other 4 ADs: measure the oscillated flux and spectrum due to non-zero θ_{13}
- Highly reduced systematic uncertainties thanks to the near/far measurements
- Collecting data from Dec. 24, 2011 to Dec. 12, 2020

Daya Bay Experiment

Neutrino Detection

Inverse beta decay (IBD)

•
$$\overline{\nu}_e + p \rightarrow e^+ + n$$

- Featured prompt-delayed pairs
 - Prompt positron ionization and annihilation
 - **Delayed** γ ('s) of ~8 MeV for nGd or 2.2 MeV for nH
- Allows for strong background suppression

Jinjing Li (Tsinghua University)

NIM A773 (2015) 8 NIM A811 (2016) 133

- 20 tons of 0.1% Gd-loaded liquid scintillator (GdLS) as target for nGd
- 21 tons of liquid scintillator (LS) as gamma catcher and main target for nH
- 40 tons of mineral oil as shielding

$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L,E) = \left[1 - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \frac{\Delta m_{21}^2 L}{4E} - \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \frac{\Delta m_{31}^2 L}{4E} + \sin^2 \theta_{12} \sin^2 \frac{\Delta m_{12}^2 L}{4E}\right)\right]$$

- Neutrinos change flavor state as a function of distance (L) and energy (E)
- Daya Bay observes $\overline{\nu}_{\rho}$ disappearance at a baseline around the first maximum of oscillation term modulated by $\sin^2 2\theta_{13}$

Neutrino Oscillation

Selection of IBD Candidates

Jinjing Li (Tsinghua University)

- Remove spontaneous flashing from PMTs
- Veto events that are close in time to muons
- Energy criteria
- Temporal and spatial coincidence
 - nGd: 1 μ s < Δt < 200 μ s
 - nH: $\Delta t > 1 \ \mu s$, $\Delta r + \Delta t / [600 \ \mu s / m] < 1 \ m$
- Multiplicity cut: time-isolated event pairs

Oscillation Results Based on nGd

Best fit results:

- Normal mass ordering :

Inverted mass ordering :

Jinjing Li (Tsinghua University)

 $\Delta m^{2}_{32} = (2.466 \pm 0.060) \times 10^{-3} \text{ eV}^{2}$ (2.4% precision) $\Delta m^2_{32} = -(2.571 \pm 0.060) \times 10^{-3} \text{ eV}^2$ (2.3% precision)

Latest Oscillation Results from Daya Bay

12

- [Previous DYB nH result: PRD 93, 072011 (2016)]
 - Two independent analyses: consistent
 - **3.1 times more statistics** (2/3 of the full data set)

Jinjing Li (Tsinghua University)

New nH oscillation result with 1958 days of data in arXiv:2406.01007 released on June 3, 2024

Significant improvements in candidate selection, backgrounds and efficiencies, energy calibration...

New energy response model -> First rate+shape analysis with nH-only sample

- Adding the non-linearities on deposited energy on step-by-step basis

Jinjing Li (Tsinghua University)

• Able to decouple leakage for data with Calorimeter function: Nucl. Instrum. Meth. A 827 (2016), 165-170 • Able to adjust each effect and study the resulted uncertainty on the measured prompt spectrum

- The identicalness among ADs is examined and used to evaluate the AD-uncorrelated uncertainties
- The total systematic uncertainty benefits from the larger statistics and new control techniques

Entries [MeV⁻ 🕂 EH2-AD2 + EH3-AD2

🔶 EH1-AD1

🕂 EH1-AD2

I								
								Ξ
							_	
								Ξ
							_	
								Ξ
								=
							_	
								Ξ
	L							7
Ì							-	
								Ξ
4								
							_	
								Ŧ
J				_				
								Ш
							_	∃
		_	 	_	_		_	∃
		_	 	_	_	_	_	Ξ
								Ξ
							_	Ξ
							_	Ξ
-		-	 	-	-			Ξ
							_	Ξ
							_	Ξ
-				-			_	Ξ
							_	Ξ
-		-	 	-	-			Ξ
							_	Ξ
							_	Ξ
-								Ξ
-	-						_	
-		-	 • •	-	-			Ξ
								Ξ
								Ξ
								Ξ
							-	∃
-		-	 	-	-		-	Ξ
								Ξ
								Ξ
•								Ξ
							-	Ξ
-		-	 • -	-	-			크
								Ξ
							•	Ξ
()	_		-		_		
. (,							14

• The results with rate+shape analysis yield: $\sin^2 2\theta_{13} = 0.0759^{+0.0050}_{-0.0040}$ -0.0049 $\Delta m^2_{32} = 2.72^{+0.14}_{-0.15} \times 10^{-3} \,\text{eV}^2$ [NO], $-2.83^{+0.15}_{-0.14} \times 10^{-3} \,\text{eV}^2$ [IO] • nGd+nH combined result: 0.0833 ± 0.0022

Jinjing Li (Tsinghua University)

Global Comparison

- Daya Bay's nH measurement provides a $\sin^2 2\theta_{13}$ precision surpassed only by Daya Bay's nGd result
 - Statistical uncertainty accounts for about 46% of the total
 - 8% improvement in nGd+nH result compared to nGd-only
- nGd+nH leads to a precision measurement of $sin^2 2\theta_{13}$, 2.6% precision

Global Comparison

- Daya Bay's nH measurement provides a $sin^2 2\theta_{13}$ precision surpassed only by Daya Bay's nGd result
 - Statistical uncertainty accounts for about 46% of the total
 - 8% improvement in nGd+nH result compared to nGd-only
- nGd+nH leads to a precision measurement of $sin^2 2\theta_{13}$, 2.6% precision

Consistent results from reactor and accelerator experiments

Sterile Neutrinos

Poster from Shiqi Zhang, ID-594, arXiv:2404.01687 [Accepted by Phys. Rev. Lett.]

Search for Sterile Neutrinos

- Minimal "3+1" extension of the three-neutrino mixing scenario is considered
- No evidence of a light sterile neutrino was found
 - Set limits in $(\sin^2 2\theta_{14}, \Delta m^2_{41})$ space: Gaussian CL_s and Feldman-Cousins methods
- The world's most stringent limits on the sterile-active neutrino mixing parameter $\sin^2 2\theta_{14}$ were obtained in the region of 2 × 10⁻⁴ eV² $\leq \Delta m^2_{41} \leq 0.2 \text{ eV}^2$

Jinjing Li (Tsinghua University)

Cosmogenic 9Li/8He Background

- First observation of ⁸He at Daya Bay
 - using β cascade decays of ⁸He-⁸Li^{g.s.}
- The smallest production yield isotope in LS
- Valuable inputs for future experiments

Jinjing Li (Tsinghua University)

- Daya Bay leads the precision measurement for θ_{13}
 - Giving the most precise measurement of $\sin^2 2\theta_{13}$
 - And one of the best measurements of Δm^2_{32}
 - Providing an high-precision independent cross-validation via nH sample
 - And world-leading constraints on light sterile neutrino mixing
- Still more results are expected to be released
 - nH oscillation results with the full data set
 - Joint sterile neutrino analysis with other experiments
 - Other non-oscillation results

Stay Tuned!

Daya Bay collaboration

香港科技大學賽馬會高等研究院 HKUST Jockey Club Institute for Advanced Study

潮机