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Scattering Amplitudes
are the building blocks for theoretical predictions

at high-energy colliders (actually, their square)

Intriguing mathematical properties

New special functions at higher orders 

Geometric reinterpretation

Efficient and sophisticated methods for their 
evaluation (integration by parts IBP, recursive, 
differential equations, canonical form, …)

However, scattering amplitudes are not physical 
objects because they are defined for a fixed 
number of external particles 
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Cauchy’s residue theorem 
in the loop energy complex plane

o Bierenbaum, Catani, Draggiotis and G. Rodrigo,  JHEP 10 (2010) 073Two and three loops

Multiple poles o Bierenbaum, Buchta, Draggiotis, Malamos and G. Rodrigo,  JHEP 03 (2013) 025 

Selects the poles with 
negative imaginary 

components 

Im (𝜂 ∙ 𝑞𝑖) < 0 Euclidean space instead 
of Minkowski space

𝜂𝜇 = (1,𝟎)

∫
𝐶𝐿

𝑛

∏
𝑖=1

𝐺𝐹(𝑞𝑖) = − 2𝜋𝑖∑ Res(
𝑛

∏
𝑖=1

𝐺𝐹(𝑞𝑖),  Im (𝜂 ∙ 𝑞𝑖) < 0) = ∑

    The Loop-Tree Duality 
o Catani, Gleisberg, Krauss, G. Rodrigo and Winter, JHEP 09 (2008) 065

Fundamental concepts

https://www.google.com/url?sa=i&url=https://es.123rf.com/photo_97950232_olivo-dibujado-a-mano-ilustraci%C3%B3n-vectorial-dibujo-realista-color-.html&psig=AOvVaw2jAXqC7kIxs2X5mm_rvpNg&ust=1682120687172000&source=images&cd=vfe&ved=0CBEQjRxqFwoTCMDSvILSuf4CFQAAAAAdAAAAABAE
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LTD CAUSAL UNITARY

Vacuum amplitudes in LTD
1

λi1i2⋯in
=

1
∑n

s=1 q(+)
is,0

, q(+)
is,0

= q2
is + m2

is − ı0 .

Feynman propagators are substituted by causal propagators of the form

Each causal propagator involves a set of internal particles that divide the amplitude in two 
subamplitudes, with the momentum flow of all particles in the set aligned in the same direction


Two causal propagators are compatible if the common particles are aligned in the same direction 
 DAG (Directed acyclic graph) configurations  

If ,  all particles in the set would become on shell, but  cannot vanish !!!


Consequently, the vacuum amplitude cannot generate any soft, collinear or threshold singularities 
(only UV singularities allowed)

≡

λi1i2⋯in = 0 λi1i2⋯in

Generate all final states from residues on the 
on-shell energies after analytic continuation to negative values of 

those in the initial state 
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LTD CAUSAL UNITARY: MASTER IDENTITY

Differential observables

dσNkLO =
dΛ
2s ∑

(i1⋯inab)∈Σ

𝒜(Λ,R)
D (i1⋯inab) 𝒪i1⋯in Δ̃i1⋯ināb̄ ,

𝒜(Λ,R)
D (i1⋯inab) = Res ( xab

2
𝒜(Λ)

D , λi1⋯inab) − 𝒜(Λ)
UV/C(i1⋯inab)

Integration measure  dΛ =
Λ−2

∏
j=1

dΦℓj
=

Λ−2

∏
j=1

μ4−d
dd−1ℓj

(2π)d−1
,

Energy conservation Δ̃i1⋯ināb̄ = 2π δ(λi1⋯ināb̄) ,

From a vacuum amplitude  in the LTD representation that depends 
on  loop momenta

𝒜(Λ)
D

Λ

Renormalised phase-space residues

xab = 4q(+)
a,0 q(+)

b,0
local UV renormalisation and local 
subtraction of initial-state collinear

If , total 
cross section

𝒪i1⋯in = 1
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NUMERICAL IMPLEMENTATION

Proof of concept LO

𝒜(2,f )
D =

2 g(0)
f

x456

|ℳ(0)
f→qq̄ |2

λ456
+ 2λ456̄ , f = H, γ* .

The two-loop vacuum amplitude

The phase-space residue

𝒜(2,f )
D (456) ≡ Res ( x6

2
𝒜(2,f )

D , λ456) =
g(0)

f

x45
|ℳ(0)

f→qq̄ |2 ,

The decay rate

dΓLO
f→qq̄ =

dΦℓ2

2 s
𝒜(2,f )

D (456) Δ̃456̄ ,
Δ̃456̄ =

π
β

δ ( |ℓ2 | −
β s

2 ) .
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TIME-LIKE LTD CAUSAL UNITARY

Double-collinear configuration (NLO)

𝒜(Λ)
D ∼

1
λi1i2⋯ab λi3⋯ab

,

A vacuum amplitude with the insertion of a trivalent interaction (it could be a 
multiloop subdiagram or an effective operator). The LTD vacuum amplitude is 
proportional to 

1
λi1i2⋯ab

λi3⋯ab=0

=
1

λi1i2ī3

,
1

λi3⋯ab
λi1i2⋯ab=0

= −
1

λi1i2ī3

,

Each phase-space residue is singular for , 
due to the following identities 

λi1i2ī3
= q(+)

i1,0
+ q(+)

i2,0
− q(+)

i3,0
→ 0

The sum of phase-space residues is finite in that limit:

lim
λi1i2ī3

→0 (𝒜(Λ)
D (i1i2⋯ab) Δ̃i1i2⋯āb̄ + 𝒜(Λ)

D (i3⋯ab) Δ̃i3⋯āb̄) = 𝒪(λ0
i1i2ī3

) .
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NUMERICAL IMPLEMENTATION

Proof of concept NLO: flat integrands
dΓ(1)

f→qq̄ =
dΦℓ1ℓ2

2 s [(𝒜(3,f,R)
D (456) Δ̃456̄ + 𝒜(3,f )

D (1356) Δ̃1356̄) + (5 ↔ 2, 4 ↔ 3)] .
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NUMERICAL IMPLEMENTATION

Proof of concept NLO

dΓ(1)
f→qq̄ =

dΦℓ1ℓ2

2 s [(𝒜(3,f,R)
D (456) Δ̃456̄

+𝒜(3,f )
D (1356) Δ̃1356̄) + (5 ↔ 2, 4 ↔ 3)] .
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NUMERICAL IMPLEMENTATION

Quantum Computing approx 
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4
NUMERICAL IMPLEMENTATION

Quantum results
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LTD CAUSAL UNITARY

Conclusions
Vacuum amplitudes in the loop-tree duality are the optimal building blocks for 
assembling theoretical predictions at high-energy colliders


This hypothesis is strongly supported by the manifestly causal properties of LTD


The vacuum amplitude act as a kernel that generates all final states contributing to a 
scattering or decay process through residues in the on-shell energies of internal 
particles, after analytic continuation to negative values of those in the initial state


The unitary sum over all phase-space residues ensures the preservation of the 
competitive advantage of the vacuum amplitude: local cancellation of soft and collinear 
singularities, absence of threshold discontinuities …


A novel representation of differential observables, which is well defined in the four 
physical dimensions of the space-time 


First proof-of-concept results presented, more to come 



    The Loop Tree-Duality evolution
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   Fundamental concepts

𝐺𝐹(𝑞𝑖) =
1

(𝑞𝑖,0 − 𝑞(+)
𝑖,0 )(𝑞𝑖,0 + 𝑞(+)

𝑖,0 )
◎  
◎  

𝑞𝑖 = ℓ + 𝑘𝑖

𝑞(+)
𝑖,0 = 𝒒2

𝑖 + 𝑚2
𝑖 − 𝚤0

Cauchy’s 
residue theorem

𝐿(1) = ∫
ℓ

𝒩(ℓ)
𝑛

∏
𝑖=1

𝐺𝐹(𝑞𝑖)
Loop-Tree Duality relation (LTD)
o Catani, Gleisberg, Krauss, G. Rodrigo and Winter, JHEP 09 (2008) 065

On-shell energy

    The Loop-Tree Duality evolution
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Cauchy’s residue theorem 
in the loop energy complex plane

   Fundamental concepts

Selects the poles with 
negative imaginary 

components 

Im (𝜂 ∙ 𝑞𝑖) < 0 Euclidean space instead 
of Minkowski space

𝜂𝜇 = (1,𝟎)

∫
𝐶𝐿

𝑛

∏
𝑖=1

𝐺𝐹(𝑞𝑖) = − 2𝜋𝑖∑ Res(
𝑛

∏
𝑖=1

𝐺𝐹(𝑞𝑖),  Im (𝜂 ∙ 𝑞𝑖) < 0) = ∑

    The Loop-Tree Duality evolution

https://www.google.com/url?sa=i&url=https://es.123rf.com/photo_97950232_olivo-dibujado-a-mano-ilustraci%C3%B3n-vectorial-dibujo-realista-color-.html&psig=AOvVaw2jAXqC7kIxs2X5mm_rvpNg&ust=1682120687172000&source=images&cd=vfe&ved=0CBEQjRxqFwoTCMDSvILSuf4CFQAAAAAdAAAAABAE
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Cauchy’s residue theorem 
in the loop energy complex plane

   Fundamental concepts

o Bierenbaum, Catani, Draggiotis and G. Rodrigo,  JHEP 10 (2010) 073Two and three loops

Multiple poles o Bierenbaum, Buchta, Draggiotis, Malamos and G. Rodrigo,  JHEP 03 (2013) 025 

Selects the poles with 
negative imaginary 

components 

Im (𝜂 ∙ 𝑞𝑖) < 0 Euclidean space instead 
of Minkowski space

𝜂𝜇 = (1,𝟎)

∫
𝐶𝐿

𝑛

∏
𝑖=1

𝐺𝐹(𝑞𝑖) = − 2𝜋𝑖∑ Res(
𝑛

∏
𝑖=1

𝐺𝐹(𝑞𝑖),  Im (𝜂 ∙ 𝑞𝑖) < 0) = ∑

    The Loop-Tree Duality evolution

https://www.google.com/url?sa=i&url=https://es.123rf.com/photo_97950232_olivo-dibujado-a-mano-ilustraci%C3%B3n-vectorial-dibujo-realista-color-.html&psig=AOvVaw2jAXqC7kIxs2X5mm_rvpNg&ust=1682120687172000&source=images&cd=vfe&ved=0CBEQjRxqFwoTCMDSvILSuf4CFQAAAAAdAAAAABAE
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   Singular behaviour in the loop momentum space
o Buchta, Chachamis, Draggiotis, Malamos 

and Rodrigo,  JHEP 11 (2014) 014 
The loop integrand becomes singular when subsets of internal 
propagators go on-shell

The two on-shell modes are graphically represented by an 
hyperboloid in the loop momentum space

𝐺−1
𝐹 (𝑞𝑖) = (𝑞𝑖,0 − 𝑞(+)

𝑖,0 )(𝑞𝑖,0 + 𝑞(+)
𝑖,0 ) = 0

𝑞(+)
𝑖,0 = 𝐪𝟐

𝒊 + 𝑚2
𝑖 − 𝚤0

𝑞(−)
𝑖,0 = − 𝑞(+)

𝑖,0

◎ Origin at         

◎ Forward on-shell 
hyperboloid (solid)

◎ Backward on-shell 
hyperboloid (dashed)

−𝑘𝑖        (𝑞𝑖 = ℓ + 𝑘𝑖)

◎ Hyperboloids degenerate to light-cones for massless 
propagators

    The Loop-Tree Duality evolution



    Open loop amplitudes and causality to all orders from the Loop-Tree Duality
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   Notation

𝒜(𝐿)(1, …,  𝐿 + 𝑘) = ∫
ℓ1,..,ℓ𝐿

  𝒜(𝐿)
𝐹 (1, …,  𝐿 + 𝑘)

𝒩({ℓ𝑖}𝐿
,  {𝑝𝑗}𝑃)𝐺𝐹(1, …,  𝐿 + 𝑘)

∏
𝑖 ∈ 1∪…∪(𝐿 + 𝑘)

(𝐺𝐹(𝑞𝑖))
𝑎𝑖

A generic -loop scattering amplitude with …𝐿 ◎ P external legs  

◎  sets of internal momenta

{𝑝𝑗}𝑃

𝐿 + 𝑘

◎ The internal structure of   is implicitly specified via the overall tagging of the different sets 
of internal momenta

𝒜(𝐿)
𝐹

∫
ℓ𝑖

= − 𝑖𝜇4−𝑑 ∫
𝑑𝑑ℓ𝑖

(2𝜋)𝑑  
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   Cauchy’s residue theorem
    Open loop amplitudes and causality to all orders from the Loop-Tree Duality

The direct iterative application of Cauchy’s residue theorem

𝒜(𝐿)
𝐷 (1,…, 𝑟; 𝑟 + 1, …, 𝐿 + 𝑘) = − 2𝜋𝚤∑

𝑖𝑟∈𝑟

Res (𝒜(𝐿)
𝐷 (1,…, 𝑟 − 1; 𝑟,  …,  𝐿 + 𝑘),  Im(𝜂 ∙ 𝑞𝑖𝑟) < 0)

𝒜(𝐿)
𝐷 (1; 2, …, 𝐿 + 𝑘) = − 2𝜋𝑖∑

𝑖1∈1

Res(𝒜(𝐿)
𝐹 (1,…,  𝐿 + 𝑘),  Im(𝜂 ∙ 𝑞𝑖1) < 0)

starting from

One propagator on 
shell in each set

All propagators 
off shell

◎ The sum over all possible on-shell configurations in  is understood through the sum of residues.𝒜(𝐿)
𝐷

The LTD representation 
is written in terms of 

nested residues
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    Open loop amplitudes and causality to all orders from the Loop-Tree Duality

𝒜(𝐿)
𝑀𝐿𝑇(1,…, 𝐿 + 1) = ∫

→
ℓ 1,..,

→
ℓ 𝐿

1
𝑥𝐿+1 ( 1

𝜆+
𝐿+1

+
1

𝜆−
𝐿+1 ) =

◎ Manifestly free of unphysical singularities.

◎ Causal singularities occur when either  or  vanishes, depending on the sign of .

◎ The same expression regardless the number of loops.

𝜆+
𝐿+1 𝜆−

𝐿+1 𝑘𝐿+1,0

1

2

3

L + 1

+

1

2

3

L + 1

2

   Causal Maximal Loop Topology

𝑥𝐿+1 =
𝐿+1

∏
𝑖=1

2 𝑞(+)
𝑖,0 ,   𝜆±

𝐿+1 =
𝐿+1

∑
𝑖=1

𝑞(+)
𝑖,0

± 𝑘𝐿+1,0  with  𝑘𝐿+1 and ∫
→
ℓ 𝑠 

≡ − 𝜇4−𝑑 ∫
𝑑𝑑−1ℓ𝑠

(2𝜋)𝑑−1external 

momentum



    Preliminary of the Loop Tree-Duality evolution Duality relation (LTD)
o  Catani, Gleisberg, Krauss, G. Rodrigo and Winter, JHEP 09 (2008) 065   Fundamental concepts

Feynman propagators have single 
poles in the upper and lower half-
plane of the complex variable 𝑞𝑖,0

The poles are displaced above 
the real axis independently of 
the sign of the energy

FTT starts from the 
advanced loop integral

𝐿(1)
𝐴 = ∫

ℓ

𝑛

∏
𝑖=1

𝐺𝐴(𝑞𝑖) 𝐿(1) = ∫
ℓ

𝑛

∏
𝑖=1

𝐺𝐹(𝑞𝑖)

LTD directly applies the Cauchy 
residue theorem to 𝐿(1)

The integral of  
vanishes along .

𝐿(1)
𝐴

𝐶𝐿

The poles in the lower half-plane contribute to the computation of , the 
residues associated to the poles with negative imaginary part of each .

𝐿(1)

𝐺𝐹(𝑞𝑖)



    Preliminary of the Loop Tree-Duality
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   Fundamental concepts

➢ The calculation of the residue at the pole of the internal line with momentum  changes the propagators of the 
other lines in the loop integral.

➢ The singularity of the uncut Feynman propagator  is regularized by a modification of the 
customary Feynman  prescription, the dual prescription .

➢ The dual prescription arises from the fact that  is evaluated at the complex value of the loop momentum  
which is determined by the location of the pole at .

➢ The  dependence of  is because de residues at each of the poles are not Lorentz-invariance quantities, 
nevertheless, it is restored after summing over all the residues. Furthermore,  is independent of , and 
depends exclusively on the momenta of the external legs.

𝑞𝑖

𝐺𝐹(𝑞𝑗) = (𝑞2
𝑗 − 𝑚2

𝑗 + 𝚤0)
−1

𝚤0 → − 𝚤0 𝜂𝑘𝑗𝑖

𝐺𝐹(𝑞𝑗) ℓ

𝑞2
𝑗 − 𝑚2

𝑗 + 𝚤0 = 0

𝜂𝜇 𝚤0

𝜂𝑘𝑗𝑖 ℓ

𝐿(1)(𝑝1, …, 𝑝𝑛) = − ∫
ℓ

𝑛

∑
𝑖=1

~𝛿(𝑞𝑖)
𝑛

∏
𝑗 = 1
𝑗 ≠ 1

𝐺𝐷(𝑞𝑖; 𝑞𝑗)

Duality relation between one-loop 
integrals and phase-spase integrals

with    and  𝐺𝐷(𝑞𝑖; 𝑞𝑗) =
1

𝑞2
𝑗 − 𝑚2

𝑗 − 𝚤0 𝜂𝑘𝑗𝑖
𝑘𝑗𝑖 = 𝑞𝑗 − 𝑞𝑖

The absence of multiple cuts is due to
  of the uncut  Feynman propagators𝚤0 → − 𝚤0 𝜂𝑘𝑗𝑖



    Preliminary of the Loop Tree-Duality

23

   Fundamental concepts
o Bierenbaum, Catani, Draggiotis and G. 

Rodrigo, JHEP 10 (2010) 073 [84]

➢ Presence of several integration loop momenta. 
➢ To simplify working with an arbitrary number of propagators we introduce the concept of sets of internal 

momenta depending on the same integration loop momenta.
➢ The Feynman and dual propagator of a set of internal momenta  is given by: 𝑘

𝐺𝐹(𝑘) = ∏
𝑖∈𝑘

𝐺𝐹(𝑞𝑖),   𝐺𝐷(𝑘) = ∑
𝑖∈𝑘

~𝛿(𝑞𝑖) ∏
𝑗 ∈ 𝑘
𝑗 ≠ 𝑖

𝐺𝐷(𝑞𝑖; 𝑞𝑗)     and    𝐺𝐷(𝑘̄) = ∑
𝑖∈𝑘

~𝛿(−𝑞𝑖) ∏
𝑗 ∈ 𝑘
𝑗 ≠ 𝑖

𝐺𝐷(−𝑞𝑖; − 𝑞𝑗)

Going to higher-orders



    Preliminary of the Loop Tree-Duality

24

   Fundamental concepts

➢ The strategy followed was the iterative application of
1.

2.

3. .
➢ We are in a scenario with either, a dual representation expressed in terms of double cuts but possible dual 

prescription depending on the integration momenta; or a scenario where the dual prescription depends 
exclusively on the external momenta but considers triple cuts.

➢ The three-loop level was also explored.

∫
ℓ1

[𝐺𝐹(1) + 𝐺𝐷(1)] = 0 

∫
ℓ𝑖

𝐺𝐹(1 ∪ 2 ∪ … ∪ 𝑛) = − ∫
ℓ𝑖

𝐺𝐷(1 ∪ 2 ∪ … ∪ 𝑛)

𝐺𝐷(𝑖 ∪ 𝑗) = 𝐺𝐷(𝑖)𝐺𝐷(𝑗) + 𝐺𝐷(𝑖)𝐺𝐹(𝑗) + 𝐺𝐹(𝑖)𝐺𝐷(𝑗)



    Preliminary of the Loop Tree-Duality
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   Fundamental concepts
o Bierenbaum, Buchta, Draggiotis, Malamos and 

G. Rodrigo, JHEP 03 (2013) 025 [85]

➢ Extending the LTD beyond diagrams with single poles requires to evaluate the contribution of the higher 
order poles which depends on the topology configuration, the nature of the internal propagators and the 
interaction vertices.

➢ For the sole double generic diagram, the procedure was similar to the one-loop case, cutting every propagator 
line once, included the double propagator, and transforming the rest of the propagators to dual propagators.

➢ For triple and higher poles, the calculation of the residue introduces contributions with powers of dual 
propagators.

➢ The tactic followed to deal with higher-order pole integrals was reducing them to single poles integrals by 
the application of Integration By Parts identities, allowing to use of the LTD theorem in its original form for 
single pole propagators.

Multiple poles
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   Singular behaviour in the loop momentum space

o Buchta, Chachamis, Draggiotis, Malamos 
and Rodrigo,  JHEP 11 (2014) 014     [88]

➢ The integration domain is restricted to the forward on-shell hyperboloids through 
the Cauchy’s residue selection.

➢  and  are separated by a time-like distance  and  is space-like separated 
with respect to the other two  and .

➢ The advantage of the LTD is that the loop integrand becomes singular only at the 
intersection of two or more on-shell hyperboloids, where two or more propagators 
become simultaneously singular.

𝑞1 𝑞2 (𝑞2 − 𝑞1)2 > 0 𝑞3

(𝑞3 − 𝑞1)2 < 0 (𝑞3 − 𝑞2)2 < 0

Forward-backward
◎ Sin
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   Singular behaviour in the loop momentum space

Massless case: ligth-cones




