Study of charm fragmentation with charm meson and baryon angular correlation measurements with ALICE

Samuele Cattaruzzi* on behalf of the ALICE Collaboration

CHEP 2024

PRAGUE

*University of Trieste and INFN, Trieste (Italy)

Heavy-flavour hadron production

Charm quark mass ~1.5 GeV/ c^2

 \rightarrow produced in hard parton-parton scattering processes in hadronic collisions

Hadronisation

Reference for Pb-Pb

Heavy-flavour hadron production cross section calculated by **factorisation approach**:

$$\frac{d\sigma^{\mathrm{H_{c}}}}{dp_{\mathrm{T}}}(p_{\mathrm{T}};\mu_{\mathrm{F}},\mu_{\mathrm{R}}) = \boxed{\mathrm{PDF}(x_{1},\mu_{\mathrm{F}}) \otimes \mathrm{PDF}(x_{2},\mu_{\mathrm{F}})} \otimes \underbrace{\frac{d\sigma^{\mathrm{c}}}{dp_{\mathrm{T}}^{\mathrm{c}}}(p_{\mathrm{T}};\mu_{\mathrm{F}},\mu_{\mathrm{R}})}_{\operatorname{Parton Distribution Functions}} \otimes \underbrace{\frac{d\sigma^{\mathrm{c}}}{dp_{\mathrm{T}}^{\mathrm{c}}}(p_{\mathrm{T}};\mu_{\mathrm{F}},\mu_{\mathrm{R}})}_{\operatorname{Section (pQCD)}} \otimes \underbrace{\frac{D_{\mathrm{c}\to\mathrm{H_{c}}}(z=p_{\mathrm{H_{c}}}/p_{\mathrm{c}},\mu_{\mathrm{F}})}_{\operatorname{(hadronisation)}}}_{\operatorname{Assumed universal across collision systems (ee,..., AA)}}$$

LICE

Charm baryon-to-meson enhancement in pp collisions

ALICE

 p_{T} -dependent enhancement of $\Lambda_{c}^{+}/D^{\circ}$ ratio in pp w.r.t. e⁺e⁻

- PYTHIA 8 Monash (<u>EPJC (2014) 3024</u>), with FF tuned on e⁺e⁻, significantly underestimates the data
- Different hadronisation mechanisms proposed
 - PYTHIA 8 CR-BLC (<u>JHEP 1508 (2015) 003</u>)
 CATANIA (arXiv:2012.12001) and QCM (<u>EPJC (2018) 78:344</u>)
 - SHM + RQM (PLB 795 (2019) 117-121)
 - POWLANG (arXiv:2306.02152)

Need to better understand HF hadronisation process

- Baryon-to-meson measurement focuses solely on the charm hadron production
- Further studies can shed light on charm-quark hadronisation by considering also the other particles produced in association to the charm hadron

Further characterisation of HF fragmentation

- Additional information from the study of:
 - Azimuthal correlations of HF hadrons with charged particles
 - multi-differential investigation of fragmentation processes
 - > characterisation of jet shape and its particle composition

Further characterisation of HF fragmentation

- Additional information from the study of:
 - Azimuthal correlations of HF hadrons with charged particles
 - multi-differential investigation of fragmentation processes
 - > characterisation of jet shape and its particle composition

- At LO approximation
 - Near Side (NS): fragmentation of the tagged charm quark
 - Away Side (AS): fragmentation of the recoil charm quark
 - Baseline: parametrizes the underlying event activity, assumed to be isotropic
- **NLO** production mechanisms, relevant at the LHC energies, can alter this topology

Further characterisation of HF fragmentation

- Additional information from the study of:
 - Azimuthal correlations of HF hadrons with charged particles
 - multi-differential investigation of fragmentation processes
 - > characterisation of jet shape and its particle composition

• **HF tagged jets**

- > access to the original parton kinematics
- > constrain the HQ fragmentation function

Longitudinal momentum fraction

$$z_{||} = rac{\dot{p}_{\mathrm{ch, jet}} \cdot \dot{p}_{\mathrm{HF}}}{ec{p}_{\mathrm{ch, jet}} \cdot ec{p}_{\mathrm{ch, jet}}}$$

D-h near-side properties

• <u>Near-Side</u>: description of charm-jet constituents, their momentum and angular displacement w.r.t. the D meson trigger

- With increasing p_{T}^{D} :
 - More energetic charm quarks
 - Larger heavy quark boost
 - ➤ More collimated shower → Sharpening of the peak
- No centre-of-mass energy dependence

D-h comparison to model predictions

NS yield:

•

Validation of parton-shower models and Monte Carlo generators

**♦** pp, *****s* = 13 TeV $|y{\rm cms}^{\rm D}| < 0.5, |\Delta \eta| < 1$ 5 $0.3 < p_{\tau}^{\text{assoc}} < 1 \text{ GeV}/c$ $1 < p_{\tau}^{\text{assoc}} < 2 \text{ GeV}/c$ Associated yield HERWIG PYTHIA6, Perugia 2011 POWHEG+PYTHIA8 3 POWHEG+PYTHIA8 LO EPOS 3.117 2 data uncertainty Ratio of model yields to data 2 10 15 20 25 30 35 0 5 10 15 20 25 30 35 ALI-PUB-527582 (GeV/c) p_{τ}^{D} (GeV/c)

 PYTHIA: Eur. Phys. J. C 74, 3024 (2014)

 POWHEG: JHEP 06 (2010) 043

 EPOS 3: Phys.Rev.C 82(2010)044904

 HERWIG: Eur.Phys.J C76 (2016) 196

- Larger values at high-p_T^D by POWHEG+PYTHIA 8 NLO than PYTHIA 8
- About 10% larger yields for POWHEG+ PYTHIA 8 NLO w.r.t. POWHEG+PYTHIA 8 LO
- **HERWIG** tends to underestimate the data at low p_T^{D} and at high p_T^{assoc}
- \circ EPOS overestimates the results over the whole $p_{\rm T}$ range

PYTHIA 8 and POWHEG+PYTHIA 8 LO provide the best description of the measurement

D_*-h vs D-h correlation distribution

Comparison of the $\Delta \phi$ shape between the D⁺ h (pp (a) 13.6 TeV) and non-strange D-h (pp (a) 13 TeV) correlation measurements:

NEW!

D⁺-h vs D-h correlation distribution

6

Comparison of the $\Delta \phi$ shape between the D⁺ h (pp (a) 13.6 TeV) and non-strange D-h (pp (a) 13 TeV) correlation measurements:

NEW!

Away Side (AS): good agreement over the whole p_{τ} range

D₁⁺-h vs D-h correlation distribution

Average D⁰, D⁺, D^{*+}

pp, $\sqrt{s} = 13 \text{ TeV}$

pp, $\sqrt{s} = 13.6 \text{ TeV}$ +5% +20% -5% -20% scale unc.

AS

EPJC 82 (2022) 335

 D_c^+

ALICE Preliminary

baseline-subtraction uncertainty

 $|y_{cms}^{D}| < 0.5, |\Delta \eta| < 1$

 $3 < p_{\tau}^{D} < 5 \text{ GeV}/c$

 $p^{\text{assoc}} > 0.3 \text{ GeV}/c$

NS

oaseline (rad⁻¹)

 $\frac{dN^{asso}}{d\Delta \varphi}$

-|~

NEW!

- Away Side (AS): good agreement over the whole
 p_T range
- Near Side (NS): significant deviation for low-p_T(D) from non-strange D meson measurement

р_тр

D₁⁺-h correlation comparison with models

ICHEP 2024, Samuele Cattaruzzi

 PYTHIA 8 CR-BLC Mode o, Mode 2, Mode 3 and Monash provide a reasonably good description of the measured shape of the distribution for p_T(D_s⁺) > 5 GeV/c

NEW!

 Anyway, significant deviation of the near-side shape from model predictions, in particular for low-p_T(D_s⁺)

D_s⁺ tagged jets

• Alternative way of probing charm fragmentation into $\mathsf{D}_{\mathsf{s}}^{\;\mathsf{+}}$

D_s⁺- tagged jets vs D°-tagged jets z_{||}^{ch} measurement

Longitudinal momentum fraction $z_{||} = \frac{\vec{p}_{\rm ch, jet} \cdot \vec{p}_{\rm HF}}{\vec{p}_{\rm ch, jet} \cdot \vec{p}_{\rm ch, jet}}$

8

ALICE

ICHEP 2024, Samuele Cattaruzzi

D_s⁺ tagged jets

• Alternative way of probing charm fragmentation into D_s^{+}

D_s⁺- tagged jets vs **D**^o-tagged jets z_{ll}^{ch} measurement

Z

Longitudinal momentum fraction

$$_{\parallel} = rac{ec{p}_{ ext{ch, jet}} \cdot ec{p}_{ ext{HF}}}{ec{p}_{ ext{ch, jet}} \cdot ec{p}_{ ext{ch, jet}}}$$

Hint of harder fragmentation of charm into D_s^{\dagger} than D° in the studied p_{τ} (ch-jet, D_s^{\dagger}) range

Could be a possible explanation of the NS observed difference in the $D_{\rm s}^{\, \rm ^{\star}}{\rm -h}$ correlation

ALICE

Λ_{c}^{+} -h vs D-h correlation distribution

• Address charm fragmentation to baryons

- From the comparison of the $\Delta \phi$ shape:
 - Good agreement between the Δφ distributions for p_T(D, Λ_c^{*}) > 5 GeV/c
 - Tendency for an enhancement of both
 Λ_c^{*}-h correlation peaks at low-p_T(D, Λ_c^{*})
 from D-h measurement

Λ_{c}^{+} tagged jets

• Access the charm quark properties if it hadronises to a baryon

Longitudinal momentum fraction

$$p_{\mathrm{l}} = rac{p_{\mathrm{ch, \, jet}} \cdot p_{\mathrm{HF}}}{ec{p}_{\mathrm{ch, \, jet}} \cdot ec{p}_{\mathrm{ch, \, jet}}}$$

Hint of softer fragmentation of charm into Λ_c^* than D° in the studied p_T (ch-jet, Λ_c^*) range

 $z_{|}$

In agreement with Λ_c^+ h results for 3 < $p_T(\Lambda_c^+)$ < 5 GeV/c

• **PYTHIA 8 CR-BLC Mode 2** in better agreement with data than the **PYTHIA 8 Monash** tune

ALICE

Summary and outlook

- ALICE has carried out a detailed study of the **charm-quark fragmentation** through charm meson and baryon angular correlations and charm meson and baryon tagged jet measurements
- Non-strange D mesons with jets and correlations:
 - \circ p_T-differential description of the charm-jet properties
 - fragmentation as in PYTHIA 8 reproduces within uncertainties the measurements
- First D⁺-h correlation measurement accessible with pp data at √s=13.6 TeV:
 - indications of harder fragmentation from both D⁺, and D⁺, jet
 - observed discrepancy between data and MC generator predictions (PYTHIA 8 CR-BLC)
- Charm-to-baryon fragmentation accessible with pp data at *ls*=13 TeV:
 - indications of **softer fragmentation** from both Λ_c^+ and Λ_c^+ jet

Summary and outlook

• ALICE has carried out a detailed study of the **charm-quark fragmentation** through charm meson and baryon angular correlations and charm meson and baryon tagged jet measurements

- > Measurement of Λ_c^* -h correlations with more precision, higher granularity and extended p_T reach
- > Address new observables (e.g. 2D angular correlations, access to beauty sector via non-prompt D)

D-h away-side properties comparison with \sqrt{s}

• <u>Away-Side</u>: description of the recoil jet, not necessarily developed by a charm quark

- Similarly as for the NS, with **increasing** p_{τ}^{D} :
 - More energetic parton:
 - Increasing yields
 - Sharpening of the peak

Λ_{c}^{+} -h correlation comparison with models

- Yields:
 - tensions with PYTHIA8 predictions
 - ∘ low- $p_T(\Lambda_c^{\dagger})$ not correctly reproduced

• Widths:

 generally overestimated, though with large uncertainties

PYTHIA 8 CR-BLC modes, despite predicting the Λ_c^{+}/D° p_T -dependence, do not describe the differences in the charm-jet