

Study of beauty-quark production, hadronization and CNM effects via non-prompt charm-hadrons in pp and p-Pb collisions with ALICE

Mingyu Zhang on behalf of the ALICE Collaboration Central China Normal University (Wuhan, China) University of Padova (Padova, Italy) July 19th, 2024

Heavy-flavor hadron production

- $m_c \sim 1.3 \text{ GeV/c}$ $b m_b \sim 4.2 \text{ GeV/c}$ collisions
 - can be calculated with perturbative QCD
- - Key assumption: fragmentation functions are universal across collision systems

$$\frac{d\sigma^{\mathrm{pp} \to H_q}}{dp_{\mathrm{T}}} = f_i(x_1, \mu_f^2) f_j(x_2, \mu_f^2) \otimes \frac{d\sigma^{ij \to q}}{dp_{\mathrm{T}}}(x_1, x_2, \mu_f^2) \otimes D_{q \to H_q}(z_q = \frac{p_{H_q}}{p_q}, \mu_f^2)$$

parton distribution nard scattering cross functions (PDFs) section (pQCD)

Ratios of particle species - a sensitive probe to heavy-quark hadronization

• Given the large mass of heavy-quarks, they are produced in hard-scattering process in hadronic

• Heavy-flavor hadron production cross section is typically calculated in a factorization approach

tragmentation function (hadronization)

Heavy-flavor hadron production

- collisions $m_c \sim 1.3 \text{ GeV/c}$ b $m_b \sim 4.2 \text{ GeV/c}$
 - can be calculated with perturbative QCD
- - Key assumption: fragmentation functions are universal across collision systems

$$\frac{d\sigma^{\mathrm{pp} \to H_q}}{dp_{\mathrm{T}}} = f_i(x_1, \mu_f^2) f_j(x_2, \mu_f^2) \otimes \frac{d\sigma^{ij \to q}}{dp_{\mathrm{T}}}(x_1, x_2, \mu_f^2) \otimes D_{q \to H_q}(z_q = \frac{p_{H_q}}{p_q}, \mu_f^2)$$

parton distribution hard scattering cross functions (PDFs) section (pQCD)

Ratios of particle species - a sensitive probe to heavy-quark hadronization

- Point-like interaction
- Pure fragmentation "vacuum"

Superposition of many "point-like" interactions Modified hadronization by MPI and CR?

• Given the large mass of heavy-quarks, they are produced in hard-scattering process in hadronic

• Heavy-flavor hadron production cross section is typically calculated in a factorization approach

fragmentation function (hadronization)

pp \rightarrow

- Cold nuclear matter effects
- Modified PDF in bound nuclei and hadronization?

ALICE experiment in Run 2

Non-prompt charm-hadron measurements performed in the central barrel ($|\eta| < 0.9$), using:

- Inner Tracking System lacksquare
- Time Projection Chamber
- Time-of-Flight detector
- V0 detectors

V0 ►Trigger Centrality determination

Reconstructed non-prompt charm-hadron

from beauty-hadron decays in this talk:

$$D^{0}(c\bar{u}) \rightarrow K^{-}\pi^{+}$$

$$D^{+}(c\bar{d}) \rightarrow K^{-}\pi^{+}\pi^{+}$$

$$D^{+}_{s}(c\bar{u}) \rightarrow \phi\pi^{+} \rightarrow K^{+}K^{-}\pi^{+}$$

$$\Lambda^{+}_{c}(udc) \rightarrow pK^{0}_{s}$$

$$\Lambda^{+}_{c}(udc) \rightarrow pK^{-}\pi^{+}$$

ALICE experiment in Run 3

111111

New TPC readout Gas Electron Multiplier Continuous readout

New: ITS2 CMOS MAPS technology Improved resolution Fast readout

Talk: July 18th, 10:45 AM, J. Liu

Non-prompt charm-hadron cross section in pp

- Precise measurements of non-prompt charm hadron cross sections
- FONLL (FF from e+e-) and TAMU (statistical hadronization approach) describe well the non-prompt D meson cross section
- The production of non-prompt Λ_c^+ shows a hint of **underestimation at low** $p_{\rm T}$ by both **FONLL (with** $b \rightarrow \Lambda_b^0$ tuned on LHCb data) PRD 100 (2019) 031102(R) and TAMU

Non-prompt D meson production-yield ratios in pp

arxiv: 2402.16417v1

- No significant p_T and \sqrt{s} dependence for prompt and non-prompt $D_s^+/(D^0 + D^+)$ ratio
- results from other LHC measurements and e+e- measurements at lower energy

Ratio of fragmentation fraction of b to strange / b to non-strange hadrons consistent with

Baryon-to-meson ratio - beauty vs. charm (light flavor)

- heavy-flavor baryon-to-meson ratios
- Similar $p_{\rm T}$ trend for charm, beauty, and strange-hadrons, compatible within uncertainties • qualitatively similar $p_{\rm T}$ trend also observed in p/ π^+
- PYTHIA 8 with CR-BLC tune shows a good agreement for charm and strange hadrons, slightly worse for beauty

Models using fragmentation functions based on e+e- significantly underestimate the

Total bb cross section

- The bb production cross section at midrapidity is extrapolated from the measurements of non-prompt charm hadrons
- theoretical uncertainty band

• The \sqrt{s} - and y-dependent $b\bar{b}$ cross section generally lies close to the upper boundary of the

Non-prompt D^o fraction in pp at 13.6 TeV in Run 3

ALI-PREL-571369

- First non-prompt charm-hadron measurement
 - in Run 3
- Measurement **down to** $p_{\rm T}$ = **0**, increased granularity w.r.t Run 2 results at 13 TeV
- Constrain modeling of charm and beauty production and hadronization in event generators

Non-prompt charm-hadron production-yield ratios in p-Pb

- uncertainties
- The non-prompt Λ_c^+/D^0 in p–Pb hints at a higher ratio than pp

 - coalescence + radial flow scenario?

• The $p_{\rm T}$ -differential **non-prompt** $\mathbf{D}^+/\mathbf{D}^0$ production yield ratios in **pp** and **p-Pb** are **compatible** within

• suggesting a hardening of the beauty-baryon spectra? - lower $p_{\rm T}$ to be covered to conclude

Nuclear modification factor - $R_{\rm pPb}$

- Nuclear modification factor: $R_{pPb} = R_{pPb}$
- within experimental uncertainties

$$/(dydp_T)$$

 $A_{\rm Pb} d^2 \sigma_{\rm pp} / (dy dp_{\rm T})$

• The $p_{\rm T}$ -differential **D** meson $R_{\rm pPb}^{\rm prompt}$ and $R_{\rm pPb}^{\rm non-prompt}$ are compatible with each other and with unity

• Due to the large uncertainties, no conclusion about possible $p_{\rm T}$ trend of non-prompt $R_{\rm pPb}^{\Lambda_{\rm c}}$

Nuclear modification factor - R_{pPb}

- The $p_{\rm T}$ integrated $R_{\rm pPb}$ of non-prompt D, J/ψ are compared with LHCb measurements of B^+ and non-prompt J/ψ
- No significant cold-nuclear matter effects on beauty at midrapidity
- Rapidity trend of non-prompt D, J/ψ , B⁺ can be described by models with modified nPDFs

Summary

- Universal fragmentation fractions assumption violated for heavy quarks
- Multiple parton interactions in pp
 - Mild CNM effects, similar in beauty and charm sectors
- system dense enough to modify hadronization w.r.t e+e-• Similar hadronization mechanism of beauty in both pp and p-Pb collisions
- Upcoming heavy-flavor measurements with Run 3 data:
 - More precise measurements with extended $p_{\rm T}$ coverage
 - Much higher statistics and new observables
 - Better constraints to theoretical models for heavy-flavor production

New charm measurements in Run 3:

July 19th 10:45 T. Cheng

Additional slides

Beauty-quark fragmentation fraction

ALI-PUB-568844

• The beauty quark fragmentation fraction is comparable to charm quarks

16

JHEP 12 (2023) 086

Non-prompt D meson fractions

•Average non-prompt D-meson fractions in multiplicity class / minimum-bias class (INEL > 0) is compatible with unity within uncertainties suggesting similar production mechanisms of charm and beauty quarks as a function of multiplicity

Non-prompt charm-hadron cross section ratio in p-Pb

- The non-prompt Λ_c^+/D^0 is compatible with the prompt one and Λ_h^0/B^0 measurement from LHCb
- The hadronization modifications for beauty may mirror those for charm quarks

Fragmentation fraction from LHCb Collboration

• Large difference at low $p_{\rm T}$ region

