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Motivation: Why Matrix Model?

Non abelian gauge theories : Underlying dynamics of subatomic particles.

Examples:





•Quantum Chromodynamics (QCD) –
Strong interaction of quarks and gluons

•Electroweak theory –
Weak and EM interaction of quarks and leptons

Many aspects are well understood, especially in the weak coupling regime.
Very challenging at strong coupling – hence use of computational methods.
For example, QCD in the strong coupling regime is nonperturbative.

For computations in the strongly coupled regime:

Most popular candidate is Lattice QCD:
very successful in hadronic sector but computationally very expensive.

Gauge matrix model proposal:

captures certain key features (of course, not all!) of a non-Abelian gauge theory
quantum mechanical model =⇒ provides a simplified computational platform.
Has been shown to reproduce light hadron masses with surprising accuracy.
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Matrix Model

The matrix model1 can be described as follows:

Quantum mechanical approximation of SU(N) Yang-Mills theory on R× S3

Building blocks : 3× (N2 − 1) real matrices Mia.

Spatial index i = 1, 2, 3 and color index a = 1, · · · , (N2 − 1)

Gauge fields are Hermitian matrices Ai (t) = MiaT
a,

where the T a = generators of SU(N) in the fundamental rep.

Rotations: Ai → RijAj , R ∈ SO(3)rot

Gauge transformations : Ai → gAig
†, g ∈ SU(N)

The configuration space: MN/AdSU(N),
MN = space of all 3× (N2 − 1) real matrices.
This bundle is twisted ⇒ Gribov Ambiguity

Field Strength, Fij = −ϵijkAk − ig [Ai ,Aj ].

1(Narsimhan-Ramdas 1979, Singer 1978 and Balachandran et.al, 2014)
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2-color 1-flavor QCD
Why 2-color 1-flavor QCD?

Gauge group is SU(2) → Simplest non-Abelian gauge theory.

computationally less challenging.

has many interesting features:
a) baryons (di-quarks and tetra-quarks) are bosonic states,
b) there are additional global symmetry (Pauli-Gürsey symmetry):
Fundamental rep of SU(2) is pseudo-real ⇒ U(1)V extended to SU(2)B .

The fermionic determinant in the path integral has no sign problem.

Pure SU(2) matrix model:

Chromoelectric field: Ei = ∂tAi ,
Chromomagnetic field: Bi =

1
2ϵijkFjk

= −Ai − ig
2 ϵijk [Aj ,Ak ]





Pure YM Hamiltonian:

HYM = Tr
[
EiEi + BiBi

]
(1)

• Potential: V (A) = BiBi = Tr
(
AiAi + igϵijk [Ai ,Aj ]Ak − g2

2 [Ai ,Aj ][Ai ,Aj ]
)

• V(A) has upto quartic terms =⇒ multi-dimensional quartic oscillator.
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Fermions in SU(2) Matrix model

Fermions are Grassmann valued matrix ψ(t) transforming as:

Fundamental rep. of color: ψ → u(h)ψ, h ∈ SU(2)

spin-
1

2
rep. of rotations: ψ → D1/2(R)ψ, R ∈ SO(3)rot

Dirac fermion, ψ =

(
bαA
d†
αA

)
, α,A = 1, 2.

b†αA and d†
αA create quarks and anti-quarks respectively.

anti-commutation algebra: {bαA, b†βB} = δαβδAB = {dαA, d†
βB}

Fermion Hamiltonian, Hf = gHint +mHm + c̃Hc , where

Hint = ψ̄γ iAaψ, Hm =
(
cos θψ̄ψ + i sin θψ̄γ5ψ

)
, Hc = ψ̄ γ0γ5ψ

Baryon chemical potential term, µ̃Hµ = 1
2 µ̃ψ̄γ

0ψ = µ̃× Baryon number

Total Hamiltonian, H = HYM + gHint +mHm + c̃Hc + µ̃Hµ

6 / 22



Symmetries of the Hamiltonian
Global Symmetries:

For m = 0 : ψ → e iθγ
5

ψ ⇐ U(1)A
Generator of U(1)A → Q0

Pauli-Gürsey Symmetry:

U(1)B
extended to−−−−−−→ SU(2)B

Generators of SU(2)B → B1,B2,B3

[Bi ,Bj ] = ϵijkBk , [Q0,B1,2,3] = 0

Three different cases:

m = 0, µ = 0 : U(1)A
Anomaly−−−−→ Z2

Residual Symmetry
⇒ SU(2)B × Z2

m ̸= 0, µ = 0 : U(1)A → Z2

Residual Symmetry
⇒ SU(2)B × Z2

µ ̸= 0 : SU(2)B → U(1)B
Residual Symmetry ⇒ U(1)B × Z2

Spatial Rotation:

Glue and Quark transforms in the
spin-1 and spin-1/2 representations.

Li = −2ϵijkTr (ΠjAk)

Si =
1
2

(
b†αAσ

i
αβbβA + dαAσ

i
αβd

†
βA

)

Ji = Li + Si

Gauge Symmetry:

Gauss Law Genarators, Ga:

Ga = −fabcPibMic + ψ̄γ0T aψ

[Ga,Gb] = ifabcGc , [H,Ga] = 0

Physical states are anihilated by Ga

Ga |·⟩ = 0, |·⟩ ∈ physical states
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Strong Coupling Regime

Recale the Hamiltonian as ⇒ Ai → g− 1
3Ai and Pi → g

1
3Pi

H = e0

[
Tr

(
PiPi + g− 4

3AiAi + ig− 2
3 ϵijk [Ai ,Aj ]Ak −

1

2
[Ai ,Aj ]

2

)

+cHc + Hint +MHm + µHµ]

e0 = g2/3/R, where R is the radius of S3.

Double scaling limit: g → ∞, R → ∞, e0 =finite ⇒ H has well-defined
spectra.

Numerical Strategy:

Hilbert space, H = HFermion ⊗HBoson

HBoson is infinite dimensional.

Use Rayleigh-Ritz (truncate HBoson to a given boson number).
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Construction of states

Eigenstates and eigenvalues labelled as spin(s), SU(2)B casimir(BrBr ) and B3

charge

H
∣∣ψj,B,B3

n

〉
= E j,B,B3

n

∣∣ψj,B,B3
n

〉
, B3

∣∣ψj,B,B3
n

〉
= B3

∣∣ψj,B,B3
n

〉

BrBr

∣∣ψj,B,B3
n

〉
= B(B + 1)

∣∣ψj,B,B3
n

〉

5 non-interacting sectors :

Sectors Mesons di-(anti-) quark tetra-(anti-) quark
J=0, B=0 ✓ ✗ ✗
J=0, B=1 ✓ ✓ ✗
J=0, B=2 ✓ ✓ ✓
J=1, B=0 ✓ ✗ ✗
J=1, B=1 ✓ ✓ ✗

µ = 0 ⇒ mesons, di-(anti-) quarks and tetra-(anti-) quarks are degenerate
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Results

Low-lying eigenvalues as a function of c from each sector(at µ = 0).
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Ground state is unique and belongs to B = 0, J = 0 sector.

Our findings:
1 Quantum phase transitions(QPT) in the sectors (B, J) = (0, 0), (1, 1), (0, 1)

due to level crossing.
2 QPTs are first order: ⟨Q0⟩ = ∂E

∂c
is discontinuous.

3 Interesting division of spin between the quark and glue. (Spin Puzzle)
4 Non-trivial Phase structure after adding the Baryon Chemical Potential.
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Quantum Phase Transition

Level crossing in the (B,J)=(0,0) is rather special ⇒ Triple crossing.
Plot of ν (= g−2/3) vs c shows three distinct phases. For g → ∞ or ν → 0
two transition lines merge at the triple point.
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Critical point (c ,M) ≈ (0.928, 0) ⇒ Q0 is discontinuous; third and fourth
Binder cumulants (g3 and g4) shows singular behaviour.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-4

-3

-2

-1

0

Q
0

M = 0

M = 0.3

M = 0.6

M = 0.9

c
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

g 3

M = 0

M = 0.025

M = 0.1

M = 0.2

c
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.30

0.35

0.40

0.45

0.50

0.55

g 4

M = 0

M = 0.3

M = 0.6

M = 0.9

c

11 / 22



A possible solution to spin puzzle?

Quarks carry (4− 24%) of Proton spin: Proton Spin Puzzle! (EMC, 1988)

For (B,J)=(1,1) the spin division is interesting compared to other sectors.

For (B,J)=(1,1): QPT occurs at (c ,M) = (c∗1 ,M) ≈ (0.22, 0)

Glue (L) and quark (S) spin contribution of gs:
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When c < c∗1 quark spin contributes significantly and it is opposite for c > c∗1 .

Distribution of spin is further clarified by ⟨S3⟩± :

For M = 0 : ⟨S3⟩± =

{
±0.67 for c < c∗1
±0.33 for c > c∗1

We observed, at heavy quark limit (M ≫ 1), ⟨S3⟩± ≈ 1, irrespective of c.
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Baryon Chemical Potential

Adding Baryon chemical potential g−2/3µB3, SU(2)B
explicitly broken−−−−−−−−−→ U(1)B

E (µ) = E (µ = 0) + µB3

Degeneracy between mesons, di-quarks and tetra-quarks are lifted.

New phases emerges:
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Ground State:

1 Phase-I: spin-0 Meson

2 Phase-II: spin-1 di-quark

3 Phase-III: spin-0 tetra-quark

Phase-II: gs is spin-1-di-quark
=⇒ SO(3)rot is spontaneously
broken
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Summary and Future Work

SU(2) Gauge theory coupled to a fundamental Dirac Fermion.

Enhanced Global symmetry (Pauli-Gürsey): U(1)v → SU(2)B

spin-0 and spin-1 Hadrons can be arranged in 5 different sectors. Each sector
is labelled by B(SU(2)B charge) and J (Total Spin).

QPTs (when we tune c) in different (B,J) sectors – Level crossings in the gs.

QPTs are 1st order: ⟨Q0⟩ = ∂E0

∂c , is discontinuous.

We studied the distribution of Spin among the quark and the glue for
different Hadrons belonging to different sectors and different phases.

Addition of Baryon chemical potential:

SU(2)B
Explicitly broken to−−−−−−−−−−→ U(1)B ⇒ U(1)B × Z2

with sufficiently large µ spin-1 di-(anti- ) quark can have lower energy than
spin-0 meson ⇒ SO(3)rot is spontaneously broken.

Ongoing work: We are currently investigating
SU(2) Gauge theory coupled to an adjoint Weyl Fermion. ⇒ N = 1 SUSY.
2-color QCD with multiple flavors: for example, 2-flavor case has SU(4)B
symmetry with SSB to Sp(4).
SU(3) 3-color 3-flavor QCD
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Thank You
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Back-up Slides
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Glueball masses obtained from matrix model of SU(3) Yang-Mills theory
(N. Acharyya,A. P. Balachandran, M. Pandey, S. Sanyal, S. Vaidya, 2018)
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Matrix model estimation of light Hadron masses (M. Pandey, S. Vaidya, 2020)
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Characteristic Polynomial and Configuration space

It is Interesting to see the Characteristic equation of interaction matrix,

Ĥint = −1

2

(
σi ⊗ τ a

)
Mia

Characteristic Polynomial:

λ4 − λ2

2
Tr

(
MTM

)
+ λdet M

1

16

[
2Tr

(
MTM

)2 −
(
Tr

(
MTM

))2]
= 0

Re-scale: x = λ

( 1
3Tr(M

TM))1/2
= λ

g2

⇒ x4 − 3

2
x2 − g3x + g4 = 0

where,

g3 =
detM

(
1
3Tr (M

TM)
)3/2 , g4 =

1

16

[
2Tr

(
MTM

)2
(
1
3Tr (M

TM)
)2 − 9

]
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Characteristic Polynomial and Configuration space

Discriminant of the qudratic polynomial:

∆(g3, g4) =
1

2

(
27g2

3 − 54g4
3 + 162g4 − 432g2

3 g4 − 576g2
4 + 512g3

4

)

Four-roots are always real, so ∆(g3, g4) ≥ 0 ⇒ At Boundary, ∆(g3, g4) = 0

Parity-invariant configurations(Mia → −Mia) have, g3 = 0.

∆(0, g4) = g4 (16g4 − 9)2 = 0 ⇒ g4 = 0and 9/16

Allowed values of g3 and
g4 lie inside the shaded
region.

⇒
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For M = 0, c < c∗0 , the quarks and glue are entangled.

In this phase, g3 ≈ 0 and g4 ≈ 9/16

In g3 − g4 plane this corresponds to the point (g3, g4) = (0, 9/16)
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Numerical strategy: Diagonalizing the Hamiltonian

The Hamiltonian is not exactly diagonalizable → use variational principle
Reference Hamiltonian: 9-dim harmononic oscillator → Eigenstates {|Φn⟩}
To find the eigenvalues and eigenstates of H (matrix model):

|Ψn⟩ → colorless eigenstates of H:

H |Ψn⟩ = En |Ψn⟩
Expand |Ψn⟩ in the basis of {|Φn⟩ : n = 0, 1, 2, ...}:

|Ψn⟩ =
∑
λ

∞∑
k=0

C n
k,λ |Φk⟩ ⊗ |Fλ⟩ ,

∑
λ

∞∑
k=0

|C n
k,λ|2 = 1

Determine C n
k,λ and En from :

hλλ
′

kk′ C n
k′,λ′ = EnC n

k,λ, hλλ
′

kk′ =
(
⟨Fλ| ⊗ ⟨Φk |

)
H
(
|Φk′⟩ ⊗ |Fλ′⟩

)

Numerical Strategy:
1 Construct hλλ

′

kk′ as a matrix ⇐ truncate at Nb boson level
2 No truncation in the fermionic Hilbert space
3 Find eigensystem of hλλ

′

kk′

4 Increase Nb till the convergence is achieved
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