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Motivation: Why Matrix Model?

@ Non abelian gauge theories : Underlying dynamics of subatomic particles.

e Quantum Chromodynamics (QCD) -
Strong interaction of quarks and gluons
o Electroweak theory —
Weak and EM interaction of quarks and leptons

Examples:

@ Many aspects are well understood, especially in the weak coupling regime.
Very challenging at strong coupling — hence use of computational methods.
For example, QCD in the strong coupling regime is nonperturbative.

@ For computations in the strongly coupled regime:

o Most popular candidate is Lattice QCD:
very successful in hadronic sector but computationally very expensive.

@ Gauge matrix model proposal:

o captures certain key features (of course, not all!) of a non-Abelian gauge theory
o quantum mechanical model = provides a simplified computational platform.
e Has been shown to reproduce light hadron masses with surprising accuracy.
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Matrix Model

The matrix model! can be described as follows:

Quantum mechanical approximation of SU(N) Yang-Mills theory on R x S3
Building blocks : 3 x (N? — 1) real matrices M;,.

Spatial index i = 1,2,3 and color index a =1,--- , (N2 — 1)

Gauge fields are Hermitian matrices A;(t) = M, T2,

where the T2 = generators of SU(N) in the fundamental rep.

Rotations: A; — RjjA;, R € 50(3)0t

Gauge transformations : A; — gA;g’, g € SU(N)

The configuration space: My /AdSU(N),

My = space of all 3 x (N? — 1) real matrices.
This bundle is twisted = Gribov Ambiguity

Field Strength, F; = —ejAx — ig [Ar, Ajl.

!(Narsimhan-Ramdas 1979, Singer 1978 and Balachandran et:al, 2014)
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2-color 1-flavor QCD

Why 2-color 1-flavor QCD?
e Gauge group is SU(2) — Simplest non-Abelian gauge theory.
@ computationally less challenging.

@ has many interesting features:
a) baryons (di-quarks and tetra-quarks) are bosonic states,
b) there are additional global symmetry (Pauli-Giirsey symmetry):
Fundamental rep of SU(2) is pseudo-real = U(1)y extended to SU(2)g.

@ The fermionic determinant in the path integral has no sign problem.

Pure SU(2) matrix model:

Chromoelectric field: E; = 0:A;,
Chromomagnetic field:  Bj = ey Fix ‘
= —Ai — Sei[Aj, Adl

Pure YM Hamiltonian:
Hyw = Tr| E.E; + B;B;)

e Potential: V(A) = B;B; =Tr (A;A,‘ + ige;jk[A;,Aj]Ak — %2[/4;, Aj][A,', AJ])
e V(A) has upto quartic terms = multi-dimensional quartic oscillator.
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Fermions in SU(2) Matrix model

@ Fermions are Grassmann valued matrix t(t) transforming as:

Fundamental rep. of color: Y — u(h)y, heSU(2)

1
spin—i rep. of rotations: ¢ — DY2(R)Y, R € SO(3)0

ba
Dirac fermion, ¢ = < T'A) , o, A=1,2.
daA

blA and dlA create quarks and anti-quarks respectively.

anti-commutation algebra:  {baa, b;B} = 0ap0aB = {dua, ng}

Fermion Hamiltonian, Hr = gH;,: + mH,,, + ¢H,, where

Hine = %y Asth, Hm = (cos 0t + i sin 00y°) , He = 1+

Baryon chemical potential term, jiH,, = 3 /i1y = fi x Baryon number
Total Hamiltonian, H = Hyy + gHint + mHm, + CH. + jiH,
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Symmetries of the Hamiltonian
o Global Symmetries:

Form=0: v — e < U(1)a
Generator of U(1)a — Qo

Pauli-Giirsey Symmetry:

U(l)B extended to SU(Z)B
Generators of SU(2)g — By, By, Bs

[Bi, Bj] = €jjxBk, [Qo,Bi123] =0

Three different cases:

om=0,p=0:UQ1)a
Residual Symmetry
= SU(Z)B X Zo

) m#O,MZOZ U(l)A—)Zz
Residual Symmetry
= 5U(2)B X Lo

o U # 0: SU(Z)B — U(l)B
Residual Symmetry = U(1)g X Z

Anomaly
— 7o
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@ Spatial Rotation:

Glue and Quark transforms in the
spin-1 and spin-1/2 representations.

L,' = 726,‘1';( Tr(I'IJ-Ak)
S = % (blAUzimﬁbﬂA + daAU&ﬁdgA)
Ji=Li+5

o Gauge Symmetry:

Gauss Law Genarators, G;:

Ga = —fabcPisMic +17° T4
[Ga, Gb) = ifabc G, [H, G3] =0
Physical states are anihilated by G,
G, |-) =0, |-) € physical states
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Strong Coupling Regime

o Recale the Hamiltonian as = A; — g~ 3A; and P; — g3 P;

1
H = € |:Tr (P,'P,' + g_%A,'A,' —|- ig_%e,-jk [A,', AJ] Ak — E [A,’,Aj]2>
+cHe + Hine + MHp, + 1iH,]

o e = g?/3/R, where R is the radius of S3.

@ Double scaling limit: g — 0o, R — o0, ey =finite = H has well-defined
spectra.

Numerical Strategy:
o Hilbert space, H = H rermion ® H Boson
@ Hposon is infinite dimensional.

e Use Rayleigh-Ritz (truncate Hpgoson to a given boson number).
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Construction of states

o Eigenstates and eigenvalues labelled as spin(s), SU(2)g casimir(B,B,) and Bs
charge

H |,(M'7,B,B3> — E;/;,B,B3 |17Z){;,B7B3>, 83 |%B,B3> — B3 |w{7,B,B3>
BB, [P = BB+ 1) 6} ™)

@ 5 non-interacting sectors :

Sectors | Mesons | di-(anti-) quark | tetra-(anti-) quark
J=0, B=0 v X X
J=0, B=1 v 4 X
J=0, B=2 v v v
J=1, B=0 v X X
J=1, B=1 v v X

o 1 =0 = mesons, di-(anti-) quarks and tetra-(anti-) quarks are degenerate
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Results

@ Low-lying eigenvalues as a function of ¢ from each sector(at u = 0).

o o

B=1,J=0
4 B=2, J=0] af
=0
S 2t y S = ] o HF
S =iy, 1 S
or B=0,J=0 ] 0
o 2f
00 02 04 06 08 10 12 14 0.0
C

@ Ground state is unique and belongs to B = 0, J = 0 sector.
@ Our findings:
© Quantum phase transitions(QPT) in the sectors (B, J) = (0,0),(1,1),(0,1)
due to level crossing.
@ QPTs are first order: (Qo) = 2 is discontinuous.
© Interesting division of spin between the quark and glue. (Spin Puzzle)
© Non-trivial Phase structure after adding the Baryon Chemical Potential.
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Quantum Phase Transition

o Level crossing in the (B,J)=(0,0) is rather special = Triple crossing.
@ Plot of v (= g=%/3) vs c shows three distinct phases. For g — oo or v — 0
two transition lines merge at the triple point.

1 08
- X 06
5o 3
R — Ey
B 04
-1 1
By 02
2b
00 02 04 06 08 10 12 14 °

0
00 02 04 06 08 10 12 14
¢

e Critical point (¢, M) =~ (0.928,0) = Q is discontinuous; third and fourth
Binder cumulants (g3 and g1) shows singular behaviour.
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A possible solution to spin puzzle?

Quarks carry (4 — 24%) of Proton spin: Proton Spin Puzzle! (EMC, 1988)
For (B,J)=(1,1) the spin division is interesting compared to other sectors.

For (B,J)=(1,1): QPT occurs at (¢, M) = (¢;, M) = (0.22,0)

Glue (L) and quark (S) spin contribution of gs:

1.8] S:
—M=0 09 (58).
16 M =0.04 # M=0
M =004 2 M =0.08 & °
M =008 14 — M =012 (Ss)
— M =0.12 -0.5]
1.2
00 02 04 06 0.8 1.0 12 14 0.0 0.1 0.2 0.3 0.4 05

00 02 04 06 08 10 12 14
c

Distribution of spin is further clarified by (S3), :

For M =0 : <53>i:{

+0.67 for c < ¢f
+0.33 forc > cf

When ¢ < ¢f quark spin contributes significantly and it is opposite for ¢ > c;.

We observed, at heavy quark limit (M > 1), (S3), = 1, irrespective of c.
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Baryon Chemical Potential

o Adding Baryon chemical potential g=2/3uBs, SU(2)g

explicitly broken U(1)s
E(u) = E(u=0)+ puBs
@ Degeneracy between mesons, di-quarks and tetra-quarks are lifted
o New phases emerges:
4 c=0
s 111
i;2

2.0

4
M=0
3
111
EY 11
I
1 1 I
0 0
0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 1.5
M c
@ Ground State:
@ Phase-l: spin-0 Meson
@ Phase-ll: spin-1 di-quark
© Phase-lll: spin-0 tetra-quark

broken

@ Phase-ll: gs is spin-1-di-quark
= S50(3),0t is spontaneously
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Summary and Future Work

@ SU(2) Gauge theory coupled to a fundamental Dirac Fermion.
@ Enhanced Global symmetry (Pauli-Giirsey): U(1), — SU(2)g
@ spin-0 and spin-1 Hadrons can be arranged in 5 different sectors. Each sector
is labelled by B(SU(2)g charge) and J (Total Spin).
@ QPTs (when we tune c) in different (B,J) sectors — Level crossings in the gs.
@ QPTs are 1st order: (Qp) = %, is discontinuous.
@ We studied the distribution of Spin among the quark and the glue for
different Hadrons belonging to different sectors and different phases.
@ Addition of Baryon chemical potential:
° SU(2)B U(].)B = U(l)B X Lo
o with sufficiently large p spin-1 di-(anti- ) quark can have lower energy than
spin-0 meson = SO(3),o: is spontaneously broken.
@ Ongoing work: We are currently investigating
o SU(2) Gauge theory coupled to an adjoint Weyl Fermion. = A/ =1 SUSY.
e 2-color QCD with multiple flavors: for example, 2-flavor case has SU(4)g
symmetry with SSB to Sp(4).
e SU(3) 3-color 3-flavor QCD

Explicitly broken to
4>
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@ Glueball masses obtained from matrix model of SU(3) Yang-Mills theory
(N. Acharyya,A. P. Balachandran, M. Pandey, S. Sanyal, S. Vaidya, 2018)
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@ Matrix model estimation of light Hadron masses (M. Pandey, S. Vaidya, 2020)

« Matrix Model Prediction
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Characteristic Polynomial and Configuration space

@ It is Interesting to see the Characteristic equation of interaction matrix,

N

1 .
Hint = 75 (UJ ® Ta) Mia
@ Characteristic Polynomial:

. N - 1 S T2
X' = Z-Tr (MTM) + Adet Mz [2Tr (MTM)° = (Tr (MTM))*| =0

A A
e Re-scale: x = —2 > =2
(ATr(MTM))E e

3
:>x4—§x2—g3x+g4:0
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Characteristic Polynomial and Configuration space
@ Discriminant of the qudratic polynomial:

1
Algs, &) = 5 (2783 — 54g5 + 162g4 — 432g3gs — 576g; + 512g;)

e Four-roots are always real, so A(gs, g4) > 0 = At Boundary, A(gs,84) =0
@ Parity-invariant configurations(M;, — —M,,) have, g3 = 0.

A(0,85) = g4 (1684 — 9)> =0 = g4 = 0and 9/16

@ Allowed values of g3 and
&a lie inside the shaded =
region. o

02|

-0.2
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@ For M =0, c < ¢, the quarks and glue are entangled.
@ In this phase, g3 ~ 0 and g4 =~ 9/16
@ In g3 — g4 plane this corresponds to the point (g3, g4) = (0,9/16)

-0.2 L
-1.0 -0.5 0.0 0.5 1.0

93
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Numerical strategy: Diagonalizing the Hamiltonian

@ The Hamiltonian is not exactly diagonalizable — use variational principle
@ Reference Hamiltonian: 9-dim harmononic oscillator — Eigenstates {|$,)}
@ To find the eigenvalues and eigenstates of H (matrix model):
e |W,) — colorless eigenstates of H:
HWV,) =&, |V,)

o Expand |W,) in the basis of {|®,) : n=10,1,2,...}:

=Y D Ghle)@lR), Y D> G =1

A k=0 A k=0

Determine C/, and &, from :

W G = EaCln Y = (] @ (4] )H(100) @ |Fy) )

Numerical Strategy
@ Construct h o as a matrix < truncate at N}, boson level
@ No truncation in the ferm|on|c Hilbert space
@ Find eigensystem of h)}
@ Increase N, till the convergence is achieved
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