Low-lying hadrons in the matrix model of two-color QCD at extreme strong coupling: Quantum phases and spin-puzzle

Arkajyoti Bandyopadhyay

Indian Institute of Technology Bhubaneswar

Joint work with:

Dr. Nirmalendu Acharyya Prasanjit Aich Prof. Sachindeo Vaidya

Based on : arXiv:2406.06055

ICHEP,2024

20 July, 2024 **K ロ ト K 何 ト K ヨ ト K ヨ ト** QQ 1 / 22

- • Motivation: Why Matrix Model?
- Why 2-color 1-falvor QCD?
- Hamiltonian of 2-color 1-flavor QCD and its symmetries
- Results: Quantum Phase Transitions(QPT) and Spin Puzzle
- **•** Summary
- **Future Work Plans**

Motivation: Why Matrix Model?

• Non abelian gauge theories : Underlying dynamics of subatomic particles.

Examples: $\sqrt{ }$ \int \overline{a} • Quantum Chromodynamics (QCD) – Strong interaction of quarks and gluons • Electroweak theory – Weak and EM interaction of quarks and leptons

- Many aspects are well understood, especially in the weak coupling regime. Very challenging at strong coupling – hence use of computational methods. For example, QCD in the strong coupling regime is nonperturbative.
- For computations in the strongly coupled regime:
	- Most popular candidate is Lattice QCD: very successful in hadronic sector but computationally very expensive.
- Gauge matrix model proposal:
	- captures certain key features (of course, not all!) of a non-Abelian gauge theory
	- quantum mechanical model \implies provides a simplified computational platform.
	- **Has been shown to reproduce light hadron ma[sse](#page-1-0)s [w](#page-3-0)[it](#page-1-0)[h s](#page-2-0)[u](#page-3-0)[rpr](#page-0-0)[isin](#page-22-0)[g](#page-0-0) [acc](#page-22-0)[ur](#page-0-0)[acy.](#page-22-0)**
Also been shown to reproduce light hadron masses with surprising accuracy.

Matrix Model

The matrix model 1 can be described as follows:

- Quantum mechanical approximation of SU(N) Yang-Mills theory on $\mathbb{R}\times S^3$
- Building blocks : 3 \times (N^2-1) real matrices M_{ia} .
- Spatial index $i = 1, 2, 3$ and color index $a = 1, \dots, (N^2 1)$
- Gauge fields are Hermitian matrices $A_i(t) = M_{ia} T^a$, where the $\mathcal{T}^{\mathit{a}}=$ generators of $SU(N)$ in the fundamental rep.
- Rotations: $A_i \rightarrow R_{ij}A_j$, $R \in SO(3)_{rot}$
- Gauge transformations : $A_i \rightarrow gA_ig^{\dagger}$, $g \in SU(N)$
- The configuration space: $M_N / AdSU(N)$, $\mathcal{M}_N =$ space of all 3 \times (N^2-1) real matrices. This bundle is twisted \Rightarrow Gribov Ambiguity

• Field Strength,
$$
F_{ij} = -\epsilon_{ijk} A_k - ig [A_i, A_j].
$$

 $^{\rm 1}$ (Narsimhan-Ramdas 1979, Singer 1978 and Balachandran [et](#page-2-0).[al,](#page-4-0) [2](#page-2-0)0 $\rm \ddot{a}$ 4[\)](#page-4-0)

2-color 1-flavor QCD Why 2-color 1-flavor QCD?

- Gauge group is $SU(2) \rightarrow$ Simplest non-Abelian gauge theory.
- **•** computationally less challenging.
- has many interesting features:
	- a) baryons (di-quarks and tetra-quarks) are bosonic states,
	- b) there are additional global symmetry (Pauli-Gürsey symmetry): Fundamental rep of $SU(2)$ is pseudo-real $\Rightarrow U(1)_V$ extended to $SU(2)_B$.
- The fermionic determinant in the path integral has no sign problem.

Pure SU(2) matrix model:

Chromoelectric field: $E_i = \partial_t A_i$, Chromomagnetic field: $B_i = \frac{1}{2} \epsilon_{ijk} F_{jk}$ $=-A_i-\frac{ig}{2}\epsilon_{ijk}[A_j,A_k]$ \mathbf{A} \mathcal{L} \mathbf{J} Pure YM Hamiltonian: $H_{YM} = Tr \Big[E_i E_i + B_i B_i \Big]$

• Potential: $V(A) = B_i B_i = \text{Tr} \left(A_i A_i + ig \epsilon_{ijk} [A_i, A_j] A_k - \frac{g^2}{2} \right)$ $\frac{g^2}{2}[A_i, A_j][A_i, A_j]\Big)$

• $V(A)$ has upto quartic terms \implies multi-dimensional quartic oscillator.
And the set of the set of

Fermions in SU(2) Matrix model

• Fermions are Grassmann valued matrix $\psi(t)$ transforming as:

Fundamental rep. of color: $\psi \to u(h)\psi$, $h \in SU(2)$ spin- $\frac{1}{2}$ rep. of rotations: $\psi \to D^{1/2}(R) \psi$, $R \in SO(3)_{rot}$

• Dirac fermion,
$$
\psi = \begin{pmatrix} b_{\alpha A} \\ d_{\alpha A}^\dagger \end{pmatrix}
$$
, $\alpha, A = 1, 2$.

 $b_{\alpha A}^{\dagger}$ and $d_{\alpha A}^{\dagger}$ create quarks and anti-quarks respectively.

anti-commutation algebra: $\{b_{\alpha A}, b_{\beta B}^{\dagger}\} = \delta_{\alpha \beta} \delta_{AB} = \{d_{\alpha A}, d_{\beta B}^{\dagger}\}$

• Fermion Hamiltonian, $H_f = gH_{int} + mH_m + \tilde{c}H_c$, where

$$
H_{int} = \bar{\psi}\gamma^i A_a \psi, \ H_m = \left(\cos\theta \bar{\psi}\psi + i \sin\theta \bar{\psi}\gamma^5 \psi\right), \ H_c = \bar{\psi}\gamma^0 \gamma^5 \psi
$$

Baryon chemical potential term, $\tilde{\mu}H_{\mu}=\frac{1}{2}\tilde{\mu}\bar{\psi}\gamma^0\psi=\tilde{\mu}\times$ Baryon number

• Total [H](#page-6-0)amiltonian, $H = H_{YM} + gH_{int} + mH_m + \tilde{c}H_c + \tilde{\mu}H_{\mu}$ $H = H_{YM} + gH_{int} + mH_m + \tilde{c}H_c + \tilde{\mu}H_{\mu}$ $H = H_{YM} + gH_{int} + mH_m + \tilde{c}H_c + \tilde{\mu}H_{\mu}$ $H = H_{YM} + gH_{int} + mH_m + \tilde{c}H_c + \tilde{\mu}H_{\mu}$ $H = H_{YM} + gH_{int} + mH_m + \tilde{c}H_c + \tilde{\mu}H_{\mu}$

6 / 22

Symmetries of the Hamiltonian

Global Symmetries:

For $m = 0 : \psi \to e^{i\theta \gamma^5} \psi \Leftarrow U(1)_A$ Generator of $U(1)_{A} \rightarrow Q_{0}$

Pauli-Gürsey Symmetry: $U(1)_B \xrightarrow{\text{extended to }} SU(2)_B$ Generators of $SU(2)_B \rightarrow B_1, B_2, B_3$

$$
[B_i, B_j] = \epsilon_{ijk} B_k, [Q_0, B_{1,2,3}] = 0
$$

Three different cases:

- $m = 0, \ \mu = 0 : U(1)_A \xrightarrow{\text{Anomaly}} \mathbb{Z}_2$ Residual Symmetry $\Rightarrow SU(2)_B \times \mathbb{Z}_2$
 $m \neq 0, \mu = 0 : U(1)_A \rightarrow \mathbb{Z}_2$
- Residual Symmetry
- $\Rightarrow SU(2)_B \times \mathbb{Z}_2$
 $\mu \neq 0 : SU(2)_B \rightarrow U(1)_B$ Residual Symmetry \Rightarrow $U(1)_B \times \mathbb{Z}_2$

 \overline{z} (\overline{z}) (\overline{z}) (\overline{z}) (\overline{z}) (\overline{z}

Symmetries of the Hamiltonian

Global Symmetries:

For $m = 0 : \psi \to e^{i\theta \gamma^5} \psi \Leftarrow U(1)_A$ Generator of $U(1)_A \rightarrow Q_0$

Pauli-Gürsey Symmetry: $U(1)_B \xrightarrow{\text{extended to }} SU(2)_B$ Generators of $SU(2)_B \rightarrow B_1, B_2, B_3$

$$
[B_i, B_j] = \epsilon_{ijk} B_k, [Q_0, B_{1,2,3}] = 0
$$

Three different cases:

- $m = 0, \ \mu = 0 : \ U(1)_A \xrightarrow{\text{Anomaly}} \mathbb{Z}_2$ Residual Symmetry $\Rightarrow SU(2)_B \times \mathbb{Z}_2$
- \bullet m \neq 0, $\mu = 0$: $U(1)_A \rightarrow \mathbb{Z}_2$ Residual Symmetry $\Rightarrow SU(2)_B \times \mathbb{Z}_2$

 $\bullet \mu \neq 0$: $SU(2)_B \rightarrow U(1)_B$ Residual Symmetry $\Rightarrow U(1)_B \times \mathbb{Z}_2$

• Spatial Rotation:

Glue and Quark transforms in the spin-1 and spin-1/2 representations.

$$
L_{i} = -2\epsilon_{ijk} \text{Tr} (\Pi_{j} A_{k})
$$

$$
S_{i} = \frac{1}{2} \left(b_{\alpha A}^{\dagger} \sigma_{\alpha \beta}^{\dagger} b_{\beta A} + d_{\alpha A} \sigma_{\alpha \beta}^{\dagger} d_{\beta A}^{\dagger} \right)
$$

$$
J_{i} = L_{i} + S_{i}
$$

Gauge Symmetry:

Gauss Law Genarators, G_a :

$$
G_a = -f_{abc} P_{ib} M_{ic} + \bar{\psi} \gamma^0 T^a \psi
$$

[G_a , G_b] = $i f_{abc} G_c$, [H , G_a] = 0

Physical states are anihilated by G_a

 $G_a |\cdot\rangle = 0,$ $|\cdot\rangle \in$ physical states K ロ ト K 何 ト K ヨ ト K ヨ ト 7 / 22

Strong Coupling Regime

Recale the Hamiltonian as $\Rightarrow A_i \rightarrow g^{-\frac{1}{3}}A_i$ and $P_i \rightarrow g^{\frac{1}{3}}P_i$

$$
H = e_0 \left[Tr \left(P_i P_i + g^{-\frac{4}{3}} A_i A_i + ig^{-\frac{2}{3}} \epsilon_{ijk} [A_i, A_j] A_k - \frac{1}{2} [A_i, A_j]^2 \right) + c H_c + H_{int} + M H_m + \mu H_\mu
$$

 $e_0 = g^{2/3}/R$, where R is the radius of S^3 .

• Double scaling limit: $g \to \infty$, $R \to \infty$, $e_0 =$ finite \Rightarrow H has well-defined spectra.

Numerical Strategy:

- \bullet Hilbert space, $\mathcal{H} = \mathcal{H}_{Fermion} \otimes \mathcal{H}_{Boson}$
- \bullet $\mathcal{H}_{\text{Boson}}$ is infinite dimensional.
- Use Rayleigh-Ritz (truncate \mathcal{H}_{Boson} to a given boson number).

Construction of states

• Eigenstates and eigenvalues labelled as spin(s), $SU(2)_B$ casimir(B_rB_r) and B_3 charge

$$
H |\psi_n^{j,B,B_3}\rangle = E_n^{j,B,B_3} |\psi_n^{j,B,B_3}\rangle, \qquad B_3 |\psi_n^{j,B,B_3}\rangle = B_3 |\psi_n^{j,B,B_3}\rangle
$$

$$
B_r B_r |\psi_n^{j,B,B_3}\rangle = B(B+1) |\psi_n^{j,B,B_3}\rangle
$$

• 5 non-interacting sectors :

• $\mu = 0 \Rightarrow$ mesons, di-(anti-) quarks and tetra-(anti-) quarks are degenerate

Results

• Low-lying eigenvalues as a function of c from each sector(at $\mu = 0$).

- Ground state is unique and belongs to $B = 0, J = 0$ sector.
- Our findings:
	- **Q** Quantum phase transitions (QPT) in the sectors $(B, J) = (0, 0), (1, 1), (0, 1)$ due to level crossing.
	- **2** QPTs are first order: $\langle Q_0 \rangle = \frac{\partial E}{\partial c}$ is discontinuous.
	- **3** Interesting division of spin between the quark and glue. (Spin Puzzle)
	- ⁴ Non-trivial Phase structure after adding the Baryon Chemical Potential.

Quantum Phase Transition

- Level crossing in the $(B,J)=(0,0)$ is rather special \Rightarrow Triple crossing.
- Plot of ν $(= g^{-2/3})$ vs c shows three distinct phases. For $g \to \infty$ or $\nu \to 0$ two transition lines merge at the triple point.

• Critical point $(c, M) \approx (0.928, 0) \Rightarrow Q_0$ is discontinuous; third and fourth Binder cumulants (g_3 and g_4) shows singular behaviour.

A possible solution to spin puzzle?

- Quarks carry (4 − 24%) of Proton spin: Proton Spin Puzzle! (EMC, 1988)
- For $(B, J) = (1, 1)$ the spin division is interesting compared to other sectors.
- For $(B, J)=(1, 1)$: QPT occurs at $(c, M) = (c_1^*, M) \approx (0.22, 0)$
- Glue (L) and quark (S) spin contribution of gs:

When $c < c_1^\ast$ quark spin contributes significantly and it is opposite for $c > c_1^\ast.$ • Distribution of spin is further clarified by $\langle S_3 \rangle_+$:

$$
\text{For } M=0: \ \left\langle S_3 \right\rangle_{\pm} = \begin{cases} \pm 0.67 & \text{for } c < c_1^* \\ \pm 0.33 & \text{for } c > c_1^* \end{cases}
$$

 \bullet We obser[ve](#page-22-0)d, at heavy quark limit $(M \gg 1)$, $\langle S_3 \rangle_+ \approx 1$, [ir](#page-13-0)[res](#page-0-0)[pe](#page-22-0)[cti](#page-0-0)ve [of](#page-0-0) [c.](#page-22-0) QQ

Baryon Chemical Potential

Adding Baryon chemical potential $g^{-2/3} \mu B_3$, $SU(2)_B$ $\xrightarrow{\text{explicitly broken}} U(1)_B$

$$
E(\mu)=E(\mu=0)+\mu B_3
$$

- Degeneracy between mesons, di-quarks and tetra-quarks are lifted.
- New phases emerges:

• Ground State:

- **1** Phase-I: spin-0 Meson
- ² Phase-II: spin-1 di-quark
- ³ Phase-III: spin-0 tetra-quark
- Phase-II: gs is spin-1-di-quark \implies SO(3)_{rot} is spontaneously broken

Summary and Future Work

- SU(2) Gauge theory coupled to a fundamental Dirac Fermion.
- Enhanced Global symmetry (Pauli-Gürsey): $U(1)_v \rightarrow SU(2)_B$
- spin-0 and spin-1 Hadrons can be arranged in 5 different sectors. Each sector is labelled by $B(SU(2)_B$ charge) and J (Total Spin).
- QPTs (when we tune c) in different (B,J) sectors Level crossings in the gs.
- QPTs are 1st order: $\langle Q_0 \rangle = \frac{\partial E_0}{\partial c}$, is discontinuous.
- We studied the **distribution of Spin** among the quark and the glue for different Hadrons belonging to different sectors and different phases.
- Addition of Baryon chemical potential:
	- $SU(2)_B$ Explicitly broken to $U(1)_B\Rightarrow U(1)_B\times \mathbb{Z}_2$
	- with sufficiently large μ spin-1 di-(anti-) quark can have lower energy than spin-0 meson $\Rightarrow SO(3)_{rot}$ is spontaneously broken.
- Ongoing work: We are currently investigating
	- SU(2) Gauge theory coupled to an adjoint Weyl Fermion. \Rightarrow N = 1 SUSY.
	- 2-color QCD with multiple flavors: for example, 2-flavor case has $SU(4)_B$ symmetry with SSB to Sp(4).
	- SU(3) 3-color 3-flavor QCD

Thank You

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q Q 15 / 22

Back-up Slides

16 / 22

 2990

メロメメ 御き メミメメ ミメー 急

• Glueball masses obtained from matrix model of SU(3) Yang-Mills theory (N. Acharyya,A. P. Balachandran, M. Pandey, S. Sanyal, S. Vaidya, 2018)

イロト イ押 トイヨ トイヨト э Ω 17 / 22 Matrix model estimation of light Hadron masses (M. Pandey, S. Vaidya, 2020)

E QQ 18 / 22

Characteristic Polynomial and Configuration space

• It is Interesting to see the Characteristic equation of interaction matrix,

$$
\hat{H}_{int} = -\frac{1}{2} \left(\sigma^i \otimes \tau^a \right) M_{ia}
$$

Characteristic Polynomial:

$$
\lambda^4 - \frac{\lambda^2}{2} \text{Tr} \left(M^T M \right) + \lambda \det M \frac{1}{16} \left[2 \text{Tr} \left(M^T M \right)^2 - \left(\text{Tr} \left(M^T M \right) \right)^2 \right] = 0
$$
\n• Re-scale:
$$
x = \frac{\lambda}{\left(\frac{1}{3} \text{Tr} \left(M^T M \right) \right)^{1/2}} = \frac{\lambda}{g_2}
$$

\n
$$
\Rightarrow x^4 - \frac{3}{2} x^2 - g_3 x + g_4 = 0
$$

• where,

$$
g_3 = \frac{\det M}{\left(\frac{1}{3}\text{Tr}\left(M^{\top}M\right)\right)^{3/2}}, \qquad g_4 = \frac{1}{16} \left[\frac{2\text{Tr}\left(M^{\top}M\right)^2}{\left(\frac{1}{3}\text{Tr}\left(M^{\top}M\right)\right)^2} - 9\right]
$$

Characteristic Polynomial and Configuration space

• Discriminant of the qudratic polynomial:

$$
\Delta(g_3,g_4)=\frac{1}{2}\left(27g_3^2-54g_3^4+162g_4-432g_3^2g_4-576g_4^2+512g_4^3\right)
$$

- \bullet Four-roots are always real, so $\Delta(g_3, g_4) \geq 0 \Rightarrow$ At Boundary, $\Delta(g_3, g_4) = 0$
- \bullet Parity-invariant configurations($M_{ia} \rightarrow -M_{ia}$) have, $g_3 = 0$.

$$
\Delta(0,g_4)=g_4(16g_4-9)^2=0 \Rightarrow g_4=0 \text{ and } 9/16
$$

• Allowed values of g_3 and g_4 lie inside the shaded region. ⇒

- For $M=0$, $c < c_0^*$, the quarks and glue are entangled.
- In this phase, $g_3 \approx 0$ and $g_4 \approx 9/16$

 290 21 / 22

Numerical strategy: Diagonalizing the Hamiltonian

- The Hamiltonian is not exactly diagonalizable \rightarrow use variational principle
- Reference Hamiltonian: 9-dim harmononic oscillator \rightarrow Eigenstates $\{|\Phi_n\rangle\}$
- \bullet To find the eigenvalues and eigenstates of H (matrix model):
	- \bullet $|\Psi_n\rangle \rightarrow$ colorless eigenstates of H:

$$
H|\Psi_n\rangle = \mathcal{E}_n |\Psi_n\rangle
$$

• Expand $|\Psi_n\rangle$ in the basis of $\{|\Phi_n\rangle : n = 0, 1, 2, ...\}$:

$$
\left|\Psi_n\right\rangle=\sum_{\lambda}\sum_{k=0}^{\infty}C_{k,\lambda}^n\left|\Phi_k\right\rangle\otimes\left|F_{\lambda}\right\rangle,\quad\sum_{\lambda}\sum_{k=0}^{\infty}\left|C_{k,\lambda}^n\right|^2=1
$$

Determine $C_{k,\lambda}^n$ and \mathcal{E}_n from :

$$
h^{\lambda\lambda'}_{kk'}C_{k',\lambda'}^n=\mathcal{E}_n C_{k,\lambda}^n, \quad h^{\lambda\lambda'}_{kk'}=\Big(\left\langle F_\lambda \right|\otimes \left\langle \Phi_k \right|\Big) H\Big(\left|\Phi_{k'}\right\rangle \otimes \left| F_{\lambda'}\right\rangle \Big)
$$

Numerical Strategy:

- **1** Construct $h_{kk'}^{\lambda\lambda'}$ as a matrix \Leftarrow truncate at N_b boson level
- ² No truncation in the fermionic Hilbert space
- **3** Find eigensystem of $h^{\lambda\lambda'}_{kk'}$
- \bullet Increase N_b till the convergence is achieved