

Multiplicity dependent and inside-jet measurement of light neutral mesons in pp collisions with ALICE

Stephan Friedrich Stiefelmaier for the ALICE collaboration Ruprecht-Karls-Universität Heidelberg

42nd **ICHEP** Prague, July 17-24, 2024

Particle production at LHC energies

- Initial state:
 - Invariant cross section of identified particles
 - Multiplicity dependence of particle p_T spectra
- Fragmentation (parton → hadrons)
 - Particle ratios $(\eta/\pi^0, \omega/\pi^0, ...)$
 - \rightarrow Universality of fragmentation function (FF)?
 - Inside-jet meson production:
 - $\rightarrow~$ Direct access to FF

- Collectivity in small systems
 - Particle *p*_T spectra in **high-multiplicity** events

Neutral meson measurement with ALICE

- Measurable over large p_{T} range
- \rightarrow Precise probe to study particle production mechanisms (PDF, FF)
- Crucial input for direct photon and dielectron cocktail

Motivation

Neutral meson measurement with ALICE

- Measurable over large p_{T} range
- $\label{eq:precise probe to study particle production} \\ mechanisms (PDF, FF)$
- Crucial input for direct photon and dielectron cocktail

In this talk:

- Inclusive neutral meson cross sections
- Multiplicity dependence
- In-jet meson production

Run:266438 Timestamp:2016-11-26 17:56:16(UTC) System: Pb-p Energy: 8.16 TeV E MCal L1 gamma and jet triggered event

Electromagnetic calorimeter (EMC = EMCal + DCal)

- Lead-scintillator calorimeter
- Large acceptance $|\eta| < 0.7, \Delta \phi \approx 107^\circ + 67^\circ$
- \rightarrow Photon and neutral jet measurement

Timestamp:2016-11-26 17:56:16(UTC) System: Pb-p Energy: 8.16 TeV EMCal L1 gamma and jet triggered even

Electromagnetic calorimeter (EMC = EMCal + DCal)

- Lead-scintillator calorimeter
- Large acceptance $|\eta| < 0.7, \Delta \phi pprox 107^\circ + 67^\circ$
- \rightarrow Photon and neutral jet measurement

Photon Conversion Method (PCM)

- Utilizing γ conversion probability of $\approx 8\%$
- \rightarrow Reconstruct γ via e^{\pm} V0-tracks from ITS + TPC
- Excellent energy resolution at low p_T: $\sigma(E_{\gamma})/E_{\gamma} \approx 1.5\%$

Photon Spectrometer (PHOS)

- PbWO₄ crystals
- $\rightarrow \gamma$ measurement
- Fine granularity: π^0 decay γ shower separation up to $p_{\rm T} = 50 \ {\rm GeV}/c$

Electromagnetic calorimeter (EMC = EMCal + DCal) **EMCal** Lead-scintillator calorimeter • Large acceptance $|\eta| < 0.7, \Delta \phi pprox 107^\circ + 67^\circ$ \rightarrow Photon and neutral jet measurement TPC Charged-particle measurement

- ITS+TPC
- PID via dE/dx from TPC
- Rec. tracks for charged jet measurement

DCa

Photon Conversion Method (PCM)

- Utilizing γ conversion probability of \approx 8%
- ightarrow Reconstruct γ via e^{\pm} V0-tracks from ITS + TPC
- Excellent energy resolution at low $p_{\rm T}$: $\sigma(E_{\gamma})/E_{\gamma} \approx 1.5\%$

Photon Spectrometer (PHOS)

- PbWO₄ crystals
- $ightarrow \gamma$ measurement
- Fine granularity: π^0 decay γ shower separation up to $p_{\rm T}=$ 50 GeV/c

 π^{0} , η and ω in pp at $\sqrt{s} = 13$ TeV

- Combination of various reconstruction methods
- $B=0.2~{
 m T}$ data used to extract π^0 down to $p_{
 m T}=0.2~{
 m GeV}/c$
- Inv. cross section in pp at $\sqrt{s} = 13$ TeV
 - $\pi^0: 0.2 < p_T < 200 \text{ GeV}/c$
 - η : 0.4 < $p_{\rm T}$ < 50 GeV/c
 - ω : 1.5 < $p_{\rm T}$ < 50 GeV/c
- NLO with **NNFF1.0 FF describes** π^0 spectrum
 - PYTHIA8 overestimates and does not describe spectral shape

π^{0} , η and ω in pp at $\sqrt{s}=13~{ m TeV}$

- Combination of various reconstruction methods
- B=0.2 T data used to extract π^0 down to $p_{\rm T}=0.2$ GeV/c
- Inv. cross section in pp at $\sqrt{s} = 13$ TeV
 - $\pi^0: 0.2 < p_T < 200 \text{ GeV}/c$
 - η : 0.4 < $p_{\rm T}$ < 50 GeV/c
 - ω : 1.5 < $p_{\rm T}$ < 50 GeV/c
- NLO with NNFF1.0 FF describes π^0 spectrum
 - PYTHIA8 overestimates and does not describe spectral shape

Particle ratios

- Measurements in pp at $\sqrt{s} = 13$ TeV reach up to $p_{\rm T} = 50$ GeV/c
- η/π^0 : No significant dependence on collision energy
- ω/π^0 : Hint of collision energy dependence

Multiplicity dependence — π^0 spectra

- Highest multiplicities (0–0.01%): $\approx 5.3 \times \langle dN_{ch}/d\eta \rangle_{inel}$
- π^0 spectra from $p_{\rm T}=$ 0.4 up to 50–200 GeV/c
- \rightarrow Hardening of p_{T} spectra with rising multiplicity

6

Multiplicity dependence — π^0 spectra: ratio to inclusive

- Ratio of π^0 spectra in mult. intervals to inclusive
- \rightarrow Hardening of p_{T} spectra with rising multiplicity

Comparison to PYTHIA

- General ordering and magnitude described by PYTHIA
- Slightly different p_{T} dependence

Multiplicity dependence of η/π^{0}

- η/π^0 extracted for all multiplicity intervals
- Hint at multiplicity ordering visible
- Slight suppression at low *p*_T at high multiplicities
- \rightarrow Larger fraction of π^0 feed-down from heavier particles $(\eta, \omega, \rho^{\pm})$
- $\rightarrow\,$ Described qualitatively by PYTHIA

Neutral mesons inside jets

$$E\frac{d^{3}\sigma^{H}}{d\vec{p}} = \sum_{a,b,c} \mathsf{PDF}_{a} \bigotimes \mathsf{PDF}_{b} \bigotimes d\sigma_{ab \to cX} \bigotimes \mathsf{FF}_{c}^{H}(z_{c}, Q)$$

Observables

- Full jet momentum $\rightarrow Q$
- Correlation of meson inside jet cone with jet momentum $\rightarrow Z = \frac{\vec{p}_{\pi^0} \cdot \vec{p}_{jet}}{|\vec{p}_{iet}|^2}$
- Reconstruction of mesons inside jet cone

(R = 0.4)

$\pi^{\rm 0}$ mesons inside jets

- Reconstruction of mesons inside jet cone (R = 0.4)
- Decomposition of π^0 spectra into single $p_{T, jet}$ bins
- \rightarrow Clear ordering and hardening of meson p_T -spectra with rising $p_{T, jet}$

Comparison to PYTHIA

- General ordering and magnitude described
- Contribution to inclusive spectrum peaks at lower p_T
- $\rightarrow\,$ Hint for softer fragmentation in PYTHIA

π^0 and η mesons inside jets — Fragmentation

- First measurement of π^0 and η fragmentation functions at LHC energies
- For p_{T, jet} > 20 GeV/c:
 Only small dependence on p_{T, jet}

π^0 and η mesons inside jets — Fragmentation

Comparison to PYTHIA

- General ordering and magnitude described, shape slightly different
- $\rightarrow\,$ Softer fragmentation predicted by PYTHIA
- $p_{T, jet}$ dependence of η/π^0 described

• η/π^0 ratio similar for $p_{T, jet} > 10 \text{ GeV}/c$ as function of z

Summary

• π^0 , η and ω mesons in pp at $\sqrt{s} = 13 \text{ TeV}$

- *p*_T spectra measured over wide *p*_T range with small uncertainties
- Hint of collision energy dependence of ω/π^0

• Multiplicity dependence of π^0 and η production

- Precise spectra up to high multiplicities (0-0.01%)
- Slight multiplicity dependence of η/π^0
- $\rightarrow\,$ Driven by feed-down into π^{0}

• π^0 and η production inside jets

- Clear dependence of η/π^0 on $p_{\mathrm{T, \, jet}}$
- $\rightarrow\,$ Driven by feed-down into π^0
- First measurement of fragmentation functions

BACKUP

Raw signal extraction — Inv. mass based

- Reconstructing signal by combining measured decay particles
- Background subtraction + integration around mass position
 - $\rightarrow \mathsf{Raw} \text{ yield}$

Raw signal extraction — Purity-based

- Using EMCal clusters containing both π^0 decay photons
- \rightarrow Differentiate between merged π^0 and single γ clusters via long axis of shower ellipse (σ_{long}^2)
- \rightarrow High π^0 purity (> 70%)

Multiplicity dependence of η/π^0

- η/π^0 extracted for all multiplicity intervals
- Hint at multiplicity ordering visible
- Slight suppression at low p_T at high multiplicities
- \rightarrow Larger fraction of π^0 feed-down from heavier particles (η , ω , ho^{\pm})
- ightarrow Described qualitatively by PYTHIA

