ICHEP 2024 | PRAGUE

Investigation of charm-quark hadronization in proton-proton collisions with ALICE

Tiantian Cheng, CCNU (WuHan), GSI (Darmstadt) on behalf of the ALICE Collaboration

> tiantian.cheng@cern.ch July 19th, 2024

Introduction

• The production of heavy-flavor hadrons in hadronic collisions can be described within QCD factorization:

Introduction

• The production of heavy-flavor hadrons in hadronic collisions can be described within QCD factorization:

$$d\sigma_{AB \to h} = \underbrace{\mathbf{f}_{i/A}(\mathbf{x}_i, \mathbf{Q}^2) \otimes \mathbf{f}_{j/B}(\mathbf{x}_j, \mathbf{Q}^2)}_{\text{Parton distribution functions (PDFs)}} \otimes \underbrace{d\sigma_{ij \to q\bar{q}}(\mathbf{x}_i \mathbf{x}_j, \mathbf{Q}^2)}_{\text{Hard scattering}} \otimes \underbrace{\mathbf{D}_{q \to h}(\mathbf{z}, \mathbf{Q}^2)}_{\text{(hadronization)}}$$

- PDFs and hadronization are parametrized and extracted from measurements
 - PDFs e.g. deep-inelastic scattering
 - Fragmentation functions & fractions, e^+e^- and ep collisions
- Test the **universality** of hadronization at the different collider experiments

Tiantian Cheng, ICHEP 2024

ALICE experiment in Run 3

Run 3 upgrades:

- Upgraded **ITS** detector Gas Electron Multipliers (GEMs) in **TPC** readout
- Data acquisition in continuous readout mode
- New Fast Interaction Trigger (FIT) trigger
- Muon Forward Tracker(MFT) $2.5 < \eta < 3.6$

New entries for the measured particles (talk here)

 $egin{aligned} {
m D}^+ & o \phi \pi^+ o {
m K}^+ {
m K}^- \pi^+ \ \Sigma_{
m c}^{0,++}(2520) & o \Lambda_{
m c}^+ \pi^{+,-} o {
m p} {
m K}^- \pi^+ \pi^{+,-} \end{aligned}$

D-meson production in pp collisions

ALICE

- Yield ratios are sensitive to the hadronization mechanism
 - \circ $\,$ Meson-to-meson ratios in agreement with e^+e^- and ep results and with models

Prompt D meson: from charm-quark fragmentation or the decays of excited open charm states Non-prompt D meson: coming from beauty-hadron decays Tiantian Cheng, ICHEP 2024

D-meson production in pp collisions

• Results are **compatible** with the values measured in e^+e^- collisions

Indicates no modification of the hadronization of charm quarks into mesons!

Story for charm baryons

- **HF-baryon puzzle** at the LHC
 - \circ ~ Disagreement from the results of the e^+e^- collisions

- Strong $p_{\rm T}$ dependence
- Underestimated by PYTHIA 8 Monash
 - $\circ~$ standard Lund fragmentation models with fragmentation functions tuned on e^+e^- data

Ratio significantly higher w.r.t. e^+e^- and ep collisions

Λ_c^{+}/D^0 in pp collisions

- Strong $p_{\rm T}$ dependence
- Underestimated by PYTHIA 8 Monash
 - $\circ~$ standard Lund fragmentation models with fragmentation functions tuned on e^+e^- data
- Qualitatively described by models
 - PYTHIA 8 CR Mode 2
 - Include additional junctions, increase baryon production
 - Catania
 - Hadronization via fragmentation and coalescence
 - \circ SHM + RQM
 - Feed-down from higher-mass charm baryons
 - Quark-recombination model (QCM)
 - Recombination of charm and light quarks with same velocity

 $\operatorname{Run}\,2\,\operatorname{results}$

Tiantian Cheng, ICHEP 2024

 $\Xi_{c}^{0,+}/D^{0}$ in pp collisions

JEHP 12 (2023) 086

Charm-strange baryon puzzle at the LHC

- All models **underestimate** the data
 - Much larger enhancement than for non-strange baryons?
- Catania model describes best the data
 - Related to the QGP in small systems?

 Ω_{0}^{0}/D^{0} in pp collisions

- No absolute branching fraction for $\Omega_c^0 \rightarrow \Omega^- \pi^+$
- The $p_{\rm T}$ trend of baryon-to-meson ratio is similar as other baryon results
- Theoretical value BR($\Omega_c^{\ 0} \rightarrow \Omega^- \pi^+$) = (0.51 \pm 0.07)% used, which limits the conclusions

Branching fraction constraints needed !

 \rightarrow Input to understand charm baryon production

PLB 846 (2023) 137625 EPJC 80 (2022) 1066

Ω_c^{0} branching ratios

- Our new result for the BR:
 - \circ 1.12 ± 0.22(stat.) ± 0.27(syst.)
- Within 2.3σ of Belle measurement
- Belle
 - \circ 1.98 \pm 0.13(stat.) \pm 0.08(syst.)
- In agreement with theory predictions

Run 2 results

arxiv: 2404.17272, accepted by PRD

Charm-quark $f(c \rightarrow h_c)$ in pp collisions

Sum of prompt D^0 , D^+ , D_s^+ , Λ_e^+ , $\Xi_e^{0,+}$, J/Ψ production cross section

- $f(c \rightarrow \Lambda_c^+)$ larger than e^+e^- , e^-p by $\times \sim 3$
- $f(c \rightarrow D^0)$ lower than e^+e^- , e^-p by $\times \sim 1.5$
- No significant energy dependence in pp collisions

Baryon enhancement at the LHC

- Observation of different fragmentation fractions at the LHC with respect to e⁺e⁻, e⁻p
- Modification of hadronization is needed !

JHEP 12 (2023) 086

- First measurement of prompt D_s⁺/D⁺ ratio in pp collisions at 13.6 TeV
 - $\circ~$ An improvement in granularity by a factor of 2 for 1 $< p_{\rm T} < 6~{\rm GeV}/c$
 - \circ ~ Down to $~p_{_{\rm T}} = 0.5~{\rm GeV}/c$

• No significant energy and rapidity dependence observed

- First time for the baryon resonance $\Sigma_c^{0,++}$ (2520) measurement at the LHC
 - Add further inputs to constraint hadronization
- New models with tuned parameters on PYTHIA 8 Mode 2 can catch the data
 - Modified parameters related to amount of suppression for heavy diquark spin 1 state w.r.t spin 0

Constraint power for model !

Summary and outlook

Stay Tuned!

- Charm-hadron measurements with ${f Run}\ 2$ data
 - \circ Charm meson: in agreement with model calculations
 - \circ Charm baryon: significantly enhanced production in pp collisions wrt leptonic collisions
- Charm-quark hadronization is not universal across colliding systems

- Charm-hadron measurements with **Run 3** data
 - \circ $\,$ More precise studies with an extended observables in Run 2 $\,$
 - \circ ~ More differential measurement and extended $p_{\rm T}$ reach
- Better constraints to theoretical models implementing different hadronization mechanisms

ADDITIONAL SLIDES

Charm baryon-to-meson yield ratios

du

Run 2 results

 $\Sigma^{0,++}$

ALICE experiment in Run 3

ALICE

- Large data samples thanks to TPC continuous readout
- Improved impact parameter resolution

Tiantian Cheng, ICHEP 2024

- First time for the baryon resonance $\Sigma_c^{0,++}$ (2520) measurement at the LHC
- The two $\Sigma_c^{0,++}$ states ratios are consistent between e^+e^- collisions and **pp** collisions within uncertainties
- Models fail to describe the $p_{\rm T}{\rm -differential}$ results