

TRANSPORT PROPERTIES OF THE STRONGLY INTERACTING QUARK-GLUON PLASMA

Ilia Grishmanovskii

in collaboration with Taesoo Song, Olga Soloveva, Carsten Greiner, and Elena Bratkovskaya

Phys.Rev.C 109 (2024), 024911 Phys.Rev.C 110 (2024), 014908

MOTIVATION

- QGP appears to be a strongly interacting system of partons \rightarrow pQCD methods are not fully applicable for the QGP \rightarrow one should rely on nonperturbative methods
- Effective QCD models focus on the most relevant degrees of freedom and interactions, making it possible to dynamically investigate
 - \circ the evolution of the QGP,
 - jet attenuation in the QGP medium,
 - o ...

DYNAMICAL QUASIPARTICLE MODEL (DQPM)

DQPM INGREDIENTS

- DQPM effective model for the description of nonperturbative QCD based on IQCD EoS
- The QGP phase is described in terms of strongly interacting off-shell quasiparticles massive quarks and gluons with Lorentzian spectral functions:

$$p_j(\omega,\mathbf{p}) = rac{4\omega\gamma_j}{\left(\omega^2-\mathbf{p}^2-M_j^2
ight)^2+4\gamma_j^2\omega^2}$$

 Theoretical basis: "resummed" single-particle Green's functions → quark (gluon) propagator (2PI) with complex self-energies

 $ext{gluon propagator:} \Delta^{-1} = P^2 - \Pi; \ ext{gluon self-energy:} \Pi = M_g^2 - 2i\gamma_g\omega;$

 ${
m quark\ propagator:}\ S_q^{-1}=P^2-\Sigma_q$ ${
m quark\ self-energy:}\ \Sigma_q=M_q^2-2i\gamma\omega$

- Real part of the self-energy thermal masses
- Imaginary part of the self-energy interaction widths of partons

P. Moreau et al., PRC 100, 014911 (2019)

DQPM INGREDIENTS

• Masses and widths of quasiparticles depend on T and $\mu_{\rm B}$

$$\begin{split} m_g^2(T,\mu_{\rm B}) &= C_g \frac{g^2(T,\mu_{\rm B})}{6} T^2 \left(1 + \frac{N_f}{2N_c} + \frac{1}{2} \frac{\sum_q \mu_q^2}{T^2 \pi^2} \right) \\ m_{q(\bar{q})}^2(T,\mu_{\rm B}) &= C_q \frac{g^2(T,\mu_{\rm B})}{4} T^2 \left(1 + \frac{\mu_q^2}{T^2 \pi^2} \right) \\ \gamma_j(T,\mu_{\rm B}) &= \frac{1}{3} C_j \frac{g^2(T,\mu_{\rm B})T}{8\pi} \ln \left(\frac{2c_m}{g^2(T,\mu_{\rm B})} + 1 \right) \end{split}$$

• Input: entropy density vs T for $\mu_B = 0 \rightarrow$ fix DQPM parameters by comparison of the DQPM entropy density to IQCD at $\mu_B = 0$

$$g^2(s/s_{SB}) = d((s/s_{SB})^e - 1)^f \ s^{QCD}_{SB} = 19/9\pi^2 T^3$$

PARTONIC INTERACTIONS

PARTONIC ELASTIC INTERACTIONS

- DQPM partonic interactions are described in terms of leading order diagrams
- DQPM reproduces the pQCD propagators for zero masses and widths of partons

 $qq \rightarrow qq$ scattering

PARTONIC INELASTIC INTERACTIONS

PARTONIC CROSS SECTIONS: ELASTIC VS INELASTIC

→ Suppression of inelastic cross section for small energies

- → Enhancement of inelastic cross section for small temperatures
- → Temperature dependence is driven by the DQPM strong coupling

PARTONIC INTERACTION RATE

• Interaction rate describes the frequency at which partons interact with each other within QGP medium

→ Inelastic interaction rates of thermal light quarks and gluons are strongly suppressed at all temperatures due to the suppression of high-energetic collisions

RELAXATION TIME

• Relaxation time defines the time it takes for a system to return to equilibrium after a change or disturbance

→ Accounting for inelastic processes only slightly shortens the relaxation time of thermal sQGP

JET TRANSPORT COEFFICIENTS

Q-HAT FROM ELASTIC REACTIONS

- \hat{q} defines the transverse momentum transfer squared per unit length: $\hat{q}=\langle q_{\perp}^2/\lambda
 angle$
- Can be calculated by using kinetic theory

DQPM: I.Grishmanovskii at al., Phys.Rev.C 109 (2024), 024911 JET: K. M. Burke et al., *PRC 90, 014909 (2014)* IQCD: A. Kumar et al., PRD.106.034505 LBT: Y. He et al., *PRC 91 (2015)* JETSCAPE: S. Cao *et al. PRC 104, 024905 (2021)* BDMPS: C.Andres *et al., Eur.Phys.J.C 76 (2016) 9, 475*

Q-HAT FROM ELASTIC AND INELASTIC REACTIONS

→ Inelastic q-hat is suppressed for low jet momentum, but is significant for high momentum

DIFFERENT "SCENARIOS" FOR STRONG COUPLING

• Jet is not a part of the QGP medium → strong coupling is not thermal → consider different strong couplings in thermal, jet, and radiative vertices

	Vertex		
Model	\bullet medium parton	• jet parton	• emitted gluon
Scenario 0	$g^{\mathrm{DQPM}}(T)$		
Scenario I	$g = \sqrt{4\pi \times 0.3}$		
Scenario II	$g^{\mathrm{DQPM}}(T)$	$g(Q^2)$	$g(k_t^2)$
Scenario III	$g^{\mathrm{DQPM}}(T)$	g(E)	g(E)
Scenario IV	$g^{ m DQPM}(T)$	g(ET)	$g(Q^2)$

Phys.Rev.C 110 (2024), 014908

Q-HAT FOR DIFFERENT "SCENARIOS"

Phys.Rev.C 110 (2024), 014908

- → High sensitivity to the choice of the strong couplings
- → The "default" DQPM with the thermal couplings produces the highest values of the transport coefficients

OUTLOOK

In this study we employed the Dynamical QuasiParticle Model – which describes the QGP medium in terms of strongly interacting massive off-shell quarks and gluons, whose properties are fitted to reproduce the lattice QCD thermodynamics at zero baryon chemical potential – to explore the properties of the sQGP, in particular:

- Partonic cross sections
- Partonic interaction rates
- Relaxation time
- Jet transport coefficients (q-hat)

Perspectives:

- Implement inelastic $2\rightarrow 3$ cross sections into full transport simulation (PHSD)
- Study the full jet evolution within transport simulations
- Implement the LPM effect