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Motivations

Why B, — pt =y at large ¢* 7

= The Bs — p+pu~~ decay allows for a new test of the SM predictions in b — s
FCNC transitions.

= Despite the O(em )-suppression w.r.t. the widely studied Bs — ,u*,u_, removal
of helicity-suppression makes the two decay rates comparable in magnitude.

= Bs — ut ™ sensitive to wider set of Wilson coeff. w.r.t. Bs — utpu~.

= At very high \/cj2 = invariant mass of the u* ™, the contributions from
penguin operators appearing in the weak effective-theory, which are difficult to
compute on the lattice, are suppressed [Guadagnoli, Reboud, Zwicky, JHEP '17] /.

In this talk | will present the first, (=) first-principles lattice QCD calculation of
the Bs — ut = decay rate for ¢2 > (4.2 GeV)2.




The effective weak-Hamiltonian

The low-energy effective theory describing the b — s transition, neglecting doubly
Cabibbo-suppressed terms, is

HOE® = 2V2GRrViVis | D Clw)Os + ZC(,J0+C““‘“ZC

1=1,2 =3
c_ (= _up = m c_ (= pn = 0
current-current: O] = (si'y PLCj) (54" PLb;) , 0; = (s’y PLC) (ey" Ppb)
ph./chromo. penguins: O7 = —m—b’a* FL.,PRrb, Og = —MEG“UGM,PRF) s
e 4T Qem
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= The amplitude A is the sandwich of Hgf?s between initial and final states

A[Bs — pt =] = (v(k, e)uT (p1)u™ (p2)| — Hog* |Bs(P))Qep+QED »

= To lowest-order in O(aem) [Beneke et al, EPJC 2011]:
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The local form factors and penguin operators

The non-perturbative, structure-dependent, information is encoded in the hadronic
tensors Hf", which can be grouped in three categories:

‘ Contributions from semileptonic operators: ‘

Hy" (p, k) = Hig (p, k) = Z/ d*y ¥ T(0] [57" Prb] (0)Jém (y)| Bs (p))

Fy Fy

= —i[g"(k-q) — ¢"k"] o T koo o

'Bs Bs

= Parametrized by vector and axial form factors Fy (x+) and Fz(z~)
[z4 = 2E,/mp,]. E is the photon energy in the rest-frame of the B;.
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= |t can be computed using standard lattice techniques. 3



The local form factors and penguin operators

The non-perturbative, structure-dependent, information is encoded in the hadronic
tensors Hf", which can be grouped in three categories:

‘ Contributions from photon-penguin operator (A-type): ‘

L .2mb i 2 o L >,
Hy (p k) =i 7 /d4y ™V (0| [~i55¥Pqp Prb] (0)Jém (y)| Bs (p))

Fpamy Frymy
2

= -3 [g;l,u (k . q) _ q,u,k,u} + E,u,upo'kpqo_ q2

= Parametrized by tensor and axial-tensor form factors Frry (z~) and Fpa (2~ ).

= |t can be computed using standard lattice techniques. 3



The local form factors and penguin operators

The non-perturbative, structure-dependent, information is encoded in the hadronic
tensors Hf", which can be grouped in three categories:

Contributions from photon-penguin operator ( B-type):

2m Yrm A _
HYp(p k) =1 q2b /d4y e T(0] [-i50"P kp PrY] (0) J¢n (v)| Bs (P))

FTmb

—i[g" (k- q) — ¢"k"] Zmb + ek g0

= Computing Fr on the lattice is challenging due to lack of analytic continuation
to Euclidean spacetime of the correlation functions of interest. We evaluate Fp
using the spectral density technique developed in [Frezzotti et al, PRD 108 '23]
(Backup). Its contribution to the branching is negligible within current accuracy. 3



The local form factors and penguin operators

The non-perturbative, structure-dependent, information is encoded in the hadronic
tensors Hf", which can be grouped in three categories:

Contributions from four-quark and chromomagnetic operators:

v dn 2 7 iqx v R
HE g a(p) = S5 / Aty d*a eV (O, () ()04 (O] Bo(p))

i=

= In the high-¢® region, they are formally of higher-order in the 1/m; expansion
[Guadagnoli, Reboud, Zwicky, JHEP '17].

= We did not compute them, but have future plans to do so.

= In the evaluation of the branching fractions we only included a
phenomenological description of the allegedly dominant contribution from the
following charming-penguin diagram:

This contribution is dominated by vector
cc resonances. Some of them overlap with
the ¢2 region we consider. A description
of our parameterization will come later.




The local form factors on the lattice (1)

We computed on the lattice the local form factors Fy, Fa, Fryv, Fra and Fp for
Ty €[0.1:0.4] = 4.16 GeV < \/q2 < 5.1 GeV

Two main sources of systematics on the lattice, which must be controlled:

= Continuum-limit extrapolation (a — 0)...

— —

L
@ a—0

= which we handle by simulating at four values of the lattice spacing
a € [0.057 : 0.09] fm using configurations produced by the ETM Collaboration.

= Extrapolation to the physical Bs meson mass, which we handle by simulating at
five different values of the heavy-strange meson mass mp, € [mp, : 2mp_]...

= and then performing the extrapolation myg, — mp, via pole-like-HQET
scaling relations. On current lattices in fact we cannot simulate directly the By
meson, which is too heavy. 4



The local form factors on the lattice (1)

We evaluate on the lattice (e.g. in the case of vector FF, Fy/):

HY (2y) = / dty d®y et e =Y T(0] Ty (0) T (ty, ¥)|Bs)
~—~
Ea%d )
in the so-called electroquenched approximation

,/“\ i.e., we neglect the quark disconnected
. - diagram, which vanishes in the

B¢< >J\u B~<-/"”Aﬁf> = SU(3)-symmetric limit and for m. — oo.

= We evaluated H“,‘; for W = {V, A, TV, T A}, for all four lattice spacings, and
for all simulated heavy-strange quark masses mp, € [mp, : 2mp_].

= When simulating at a given my_ we perform the kinematical rescaling:
Ey occmp,

i.e., we always keep zy = 2E. /mp, fixed.



Continuum limit extrapolation

We perform the continuum-limit extrapolation at fixed my_ and z-
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Systematic errors evaluated performing fits using only the three finest lattice spacings.
Results obtained using three or four lattice spacings combined using AIC. 6




Extrapolation to the physical B, meson mass

In the limit of large E~ and mp, the heavy-mass/large-energy EFT predicts up to
radiative corrections [Beneke et al, EPJC 2011, JHEP 2020]

Fy , 1 1
Bwlnma) ol o2 1) weoarvra
TH, ey Ey mp,

In the high-g2 region we consider (z~ € [0.1 : 0.4]) sizable corrections to [1] due to
resonance contributions are to be expected. Relying on VMD one has (z = m;II)

Cy and C4 are pole parameters

Fy (-, . 1
VJ(:E’Y 2) = las| 23 [K + NLO+NNLO] related to mass splitting between
7z
Hs v 1+Cv Ty pseudoscalar and vector (Cy/) or
P ’ 1 axial-vector (C4) mesons.
Hyg Ty 14+Ca2% i i !
Y We included in the fit also NLO
Fry(zy,2) _ lgs| 1+2Cy 22 K NLO+NNLO 1/Ey,1/mpu,, and NNLO 1/E2
fa T m, 140y 22 (KT + r ] 1/m?,  corrections.
s \%4 z s
Fra(zy,2)  lgs| 1+2Cxaz NNLO-terms not needed for a

[K7 + NLO+NNLO]

good x2/dof. They mainly serve

fH, zy 1+ CA%
to estimate systematic errors. 7



The form factors at the physical point mp, ~ 5.367 GeV
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= Observed steeper my -dependence of the form factors at small z-, V.
[Determination of fr, and fg, in backup].

= We performed more than 500 fits, by including or not some of the NLO and
NNLO fit parameters.

= Different fits combined using AIC or by including in the final average (and with
a uniform weight) only those fits having x2/dof < 1.4 (the two strategies give
consistent results, second criterion used to give final numbers).



Comparison with previous calculations

This work == Ref. [3] =
Ref. [4] == Ref. [5]

: Q : :
0.05 0.1 0.15 02 025 03 035 04 045 05 0.05 0.1 015 02 025 03 035 04 045 0.5

Ty

= Ref. [3] = Janowski, Pullin , Zwicky , JHEP '21 , light-cone sum rules.
= Ref. [4] = Kozachuk, Melikhov, Nikitin , PRD '18 , relativistic dispersion relations.
= Ref. [5] = Guadagnoli, Normand, Simula, Vittorio, JHEP '23, VMD/quark-model/lattice.

With a few exceptions, our results for the form factors differ significantly
from the earlier estimates (which also differ from each other).




Estimating uncertainties from missing LD contributions

We did not compute from first-principles the contributions from four-quark and
chromomagnetic operators O;—1_¢,3.

= |t is expected that among these contributions the dominant one in
Bs — uTp~v at ¢ > (4.2 GeV)? is the charming-penguin diagram stemming
from O1_2 due to J¥ = 1= charmonium resonances.

In analogy with previous works [Guadagnoli et al,
JHEP '17, 23] we model ACq(q?) as

my B(V — I
ACs(g?) = sz jeidv TV ( prp )Ty
5 05,05 ¢ o2 —m3, +imyTy
. I . C=C1+Cg/3:—0.2
This contribution can be included as a
. X o ) [ Ve [ TMeV] [ B(Vee—ptp) |
shift of the Wilson coefficient Co: T/ 3.096900(6) 0.0926(17) 0.05961(33)
w(2S) 3.68610(6) 0.294(8) 8.0(6) - 10—3
Cy — Cgﬂ(qQ) =Cy — ACy (qQ) W(3770) 3.7737(4) 27.2(1.0) *9.6(7) - 10~6
W(4040) 4.039(1) 80(10) *1.07(16) - 105
o _ 5 W(4160) 4.191(5) 70(10) *6.9(3.3) - 106
dy = |ky|—1=0 holds in the W(4230) 4.2225(24) 48(8) 3.2(2.9) 105
factorization approximation. ¥(4415) 4.421(4) 62(20) 2(1)-107°
W(4660) 14.630(6) 2 not seen

We assume uniformly distributed phases dy € [0, 27 and |ky/| = 1.75(75). 10



The br ing fractions

2
cut — 1— ot
dz Y 2
v
cut _ .cut
= ESU =a2f

mp

mp, /2 is the upper-bound on the measured photon energy.
1e-09

¢ > (4.9 GeV)?
le-10
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le-14 — : : : ‘ : ‘
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Y
SD contribution dominated by vector form factor Fy . Tensor form-factor
contributions suppressed by small Wilson coefficient C7 < Cog, C1g.

= At a:%ut ~ 0.4 our estimate of charming-penguins uncertainties is around 30%.

11



Comparison with recent results from LHCb

St my)ldg? [GeV2et]

=
3

Taken from arXiv:2404.03375 (LHCb Collaboration)
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New LHCb measurement with explicit detection of the photon in the final state, gives
an upper-bound, for qgut ~ 15 GeV?2, which is roughly one order of magnitude larger
than previous bound.

12



Conclusions

= We have presented a first-principles lattice calculation of the form factors
Fy,Fa, Fry, Fr4 entering the Bs — T~ decay, in the electroquenched
approximation.

= Systematic errors have been controlled thanks to the use of gauge
configurations produced by the ETM Collaboration, which correspond to four
values of the lattice spacing a € [0.057 : 0.09] fm, and through the use of five
different heavy-strange masses myg, € [mp, : 2mp,_].

= Presently our result for the branching fractions have uncertainties ranging from
~ 15% at 1/q2,, = 4.9 GeV to ~ 30% at 1/q2,, = 4.2 GeV.

= At small qgut uncertainty dominated by the charming-penguins which we
included using a phenomenological parameterization.

Outlook:

= Evaluate electro-unquenching effects.
= Evaluate charming-penguins contributions from first-principles.

= Simulate on finer lattice spacings to be able to reach higher my_ and reduce

the impact of the mass-extrapolation.
13



Thank you for the attention!
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Extraction of the form factors from lattice data

Illustrative example on the finest lattice spacing a ~ 0.057 fm for -, = 0.2 and
mp/me = 2.

; o MmmmﬂfﬂﬂwwM} ; mmﬁmﬁﬁﬂﬂ%%HH%HHHHH

il ¢ -

L wmmmmm HHHH’W [ mmﬁﬁwMHH}HHHH
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= We analyze separately the two contributions corresponding to the emission of
the real photon from the strange or the heavy quark.

=z, =2F,/mpy, kept fixed increasing the heavy-meson mass (E, o mpg, ). 15



Heavy-quark/large energy EFT scaling relations

= Elegant scaling laws were derived in the limit of large photon energies E. and
large mpr, [Beneke et al, EPJC 2011, JHEP 2020]. Up to O(E5 ", m};") one has

Fy(xy, mm, ; R(E., 1 1
Fyley,mms) _ |9 (7( 1) +&(xy, muy) + las| 7)
fHs zy \ A(n) mH Ty |gs| ma
F R(E., 1 1
Alzy,ma,) _ 14 ( (Ey, 1) +e(wy,ma,) — _ |¢17b|7)
fus Ty A (1) MHg Ty las| mn
F , , Ry (E, 1— 1
v @y mpg s 1) _ |45l ( T (Ey, 1) b E(ay, ma,) + Ty lgn | )
fHs T Ag (1) Mty |gs| mug
P , , Ry (E, 1-— 1
ra(Ty, muy, 1) _ 1as] ( 1 (Ey, 1) b ey, mu,) — zy sl )
frs T Ag (1) M.y |gs| mu,

= \p is 1st inverse-moment of Bs LCDA. R, Ry are radiative corrections. & is a
power-suppressed term oc 1/E~,1/my,, fH, the decay constant of Hs meson.

= Photon emission from b (o |gp|) power-suppressed w.r.t. to emission from s.
= Tensor form factors are scale and scheme dependent. On the lattice we obtained

them in MS scheme at = 5 GeV.

16



The global fit Ansatz

We extrapolate to the physical Bs through a combined fit of the form factors
[z =1/mp,, fit parameters are in red]:

Fy(x~, 2z 5 1 R z 1 z
M:Mﬁ (K+(1+bz)7+717+AM,Z+A.T,77)
fu, Ty 14 Cy 222 zy 2zl —Ag .
Ty
Fa(zy,z) lgs| 1 <\ 2 1 z
EEQSRALLAS — (K—(1+46)= - ———— + A2+ (Ay, +2KCa)—
i, 2y 14+CaE ( >:1:,Y = = o z+ (As, A)%

F n s| 1420y 22 o =
M:‘q‘;‘/zz KT+(A£'+1)Z+A3;L+(1+O;)Z Ty
JH Ty 14 Cv 2= "y z

~

Fra(zy,2) _ |gs] 1+2C%=

Ju, zy 1+C) 2

1l = g3
(K"' +(An + Dz + Afw% - (148, - 2K7C})z £,>
Ty “Y

= Fit structure takes into account constraints from the scaling laws valid at large

E., and mp_, and contains the resonance corrections (relevant at small z-).

8!

* We included in the fit also NNLO 1/E3 , 1/m3; corrections.

= Some of the constraints appearing in the large energy/mass EFT have been
relaxed as they are valid neglecting O(ms) and radiative corrections to the

power-suppressed terms. 17



Fit parameters fi global fit

Pole parameters:
Cy = (0.57(3) GeV)? | Ca =0.70(7) GeV , CT =0.77(4) GeV

Expectations from pure VMD:
CYMDP = 3 ~ (0.5 GeV)?,  CYMP = OPVMP = A1 ~ 0.5 GeV

= In vector channels, where VMD is expected to be a reasonable approximation,

substantial agreement between Cy, and C’XMD.

= In the axial channels, VMD does not work very well: many resonances of masses

Mres ~ My, + O(AQCD) s

= ... which is the reason why for F'y and Fr 4 two different parameters C'4, CZ;
have been introduced. C4 and C7 of order O(Agcp), as expected.

= For K and K7 we obtain:

K =1.46(10) GeV ™!, K =1.39(6) GevV !
18



The differential branching fractions

1e-08 . . . . . ! ! !

le-09

le-10

le-11
le-12 INT

INT no penguins =—
SD

dB/dx~

le-13 ¢
SD no penguins =

0.05 0.1 0.15 0.2 0.25 0.3 0.35
ZE»),

le-14

= For z, 2 0.15, the SD is dominant over the PT contribution.

= For z, 2 0.2, charming-penguin uncertainties become dominant, due to the
presence of charmonium states which overlap with the ., —region considered.

= INT contribution is always about two orders of magnitude smaller than SD.
19



The Ny =2+ 1+ 1 ETMC gauge ensembles

For this calculation we made use of the Wilson-Clover twisted-mass ensembles
generated by the Extended Twisted Mass Collaboration (ETMC) using
Ny =2+1+1 active flavours

ensemble B V/a* a (fm) ap my (MeV) L (fm) Ny
A48 1.726 483 - 128 0.09075 (54) 0.00120 174.5 (1.1) 4.36 109
B64 1.778 643 - 128 0.07957 (13) 0.00072 140.2 (0.2) 5.09 400
C80 1.836 80° - 160 0.06821 (13) 0.00060 136.7 (0.2) 5.46 72
D96 1.900 962 - 192 0.05692 (12) 0.00054 140.8 (0.2) 5.46 100

= |wasaki action for gluons.

= Wilson-clover twisted mass fermions
at maximal twist for quarks
(automatic O(a) improvement).

= valence quark masses ms and m. set
imposing M;,__, = 689.89(49) MeV,
M, = 2.984(4) GeV.

20



Determination of f

We determined the decay constant corresponding to the five simulated values of the
heavy-strange mass my_ on the same ensembles used to determine the form factors.

= fpg. determined using two different estimators, which only differ by 0O(a?)
cut-off effects.

= 1st estimator: fp, determined from mesonic pseudoscalar two-point correlation
function (std method). We refer to this determination as fQpt

= 2nd estimator: from the zero-momentum correlation function:

/d4y 14017 () T4 (0)| H:(0)) o fr,

= J% = sy"vsh is the axial current. We refer to this determination as f3pt

Combined continuum-extrapolation of f; pt and fglp.t using the Ansatz:
¢2pt = 2pt\/7 A+B2pta2 +D2pt 4
3t = fIPY smp, = A+ B3Pta? 4+ D3Ptqt

21



Continuum-limit extrapolation of ¢
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Extrapolation to the physical B, mass

To extrapolate to the physical Bs mass, we employed the following HQET Ansatz

as(mp)
vj(as) das B
¢(mHs) = C’YO’Y5 (mp, mp)  exp {A mz A+ mng

HQET/QCD matching

HQET-evolutor
= A and B are free fit parameters.
= my, should be identified with the pole mass mEOIC (notoriously affected by
renormalon ambiguities). We used in place of the pole mass the meson mass:
my, — mgde ~ O(AqcD)-

0.3

0.2 0.3 0.4 0.5
1/my, [GevTT)

We obtain: fp_ = 224.5(5.0) MeV FLAG average: 230.3 (1.3) MeV 23



Determination of the form factor Fr

The form factor Fp, is the smallest of all the form factors (and barely relevant within
present accuracy). It can be computed from the knowledge of the following hadronic

tensor

v . i(p—k)z & _ F
HEY (p, k) =i / d*z PR T(0|J%(0) Jhn (x)| Bs(0)) = —eﬂ“ﬂakpp[,mi
where (Z7 is the renormalization constant of tensor current)

k
Ji = —iZr(p)sa”? bﬁ

s

= When the virtual photon v* is emitted by a strange quark, the presence of
JP =17~ 55 intermediate states forbid the analytic continuation of the relevant
correlation functions from Minkowskian to Euclidean spacetime (where we
perform MC simulations).

24



The b—quark contribution to F

Let us start discussing the simpler contribution F2, due to the emission of v* from a
b-quark.

= In this case the calculation proceeds as in the case of the other form factors
Fyw, W ={V, A, TV,TA}, i.e. the hadronic tensor H;V can be directly
b

evaluated from Euclidean spacetime simulations.

= We performed simulations for three value of the heavy-strange meson mass
mp, € [mp, : 1.8mp_] (or in terms of the heavy quark mass my, for
mp/me =1,1.5,2.5), and two values of the lattice spacings (the two gauge
ensembles are called B64 and D96). Very small cut-off effects observed.

my, = m, B6d= my, = 1.5m, DIG =

my, =m, D6 my, = 2.5m, B64-e

0.1 my, = 1.5m, B64=  my, = 2.5m, D96 *ﬁ{ My =M my, = L5mes my, = 2.5m, e

0.09
0.08 El s ° o
. o
<007 & g o
~ a a
75006 2 R . * s s
0.05
] [
0.04 e ® ° ° ° °
0.03
0.1 0.2 0.3 04 0.1 02 0.3 0.4
ZA’, .’I?»y
raw-data after continuum-limit extrapolation
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Mass extrapolation of % (1)

The extrapolation of F‘IIZ(:BA,) to the physical mass mp_ = 5.367 GeV is carried out
using a VMD inspired Ansatz.

. F‘% is expected to be dominated by J¥ = 1~ bb resonance contributions (e.g.
T(1S), T(25), T(3S5), ...), which can be approximated as stable states.

= Using an unphysical heavy quark mass mj, < my, these states will be fictitious
hh, JP =17, intermediate states.

= The contribution to Fjll of a given resonance "n" of mass m,, and
electromagnetic decay constant f,, is given by

+
_ 0
b (zy) = 9o fn i g (0) + regular terms
: En(En + By —mp.)

where E,, = /m2 + E2 and (n is the polarization of the vector resonance)

(n(—k,m)| 56" b |Hs(0)) = inse PV gt (D2)(p+ qn)y + - - -

with gn = (En, k), py = p — qn.

26



Mass extrapolation of % (11)

In the heavy-quark limit the following scaling laws hold

1 1 m, AT
V1A mH, M, My,

= Al ~ O(Aqcp) and ellipses indicate NLO terms in the heavy-quark expansion.

= Using these relations FIZZ ,, €an be approximated by

+
= ) Jn gn (0) Aqep
Fib“,n(l"v) = AT 1+ 0| 2y, ﬂ?

THs 14+ 5 +

s
mp

= Qur strategy is to replace the tower of resonance contributions, with a single
effective-pole
_ 1 A+ Bx
F%(QC%WH )= <
s T A
ME, 14+ 5 + L
mp,

= A, B and Ap are free-fit parameters. Our Ansatz assumes g,f oc /Mg, which
is consistent with our data.
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Final results for [

We have performed a global fit of the x-- and mf -dependence of our lattice data,
using the Ansatz in the previous slide.

mp, =mpog  myg, = 1.7T8mp e

0.1 mp, = 1.27mp, My, = Mp,—
0.09 ‘

0.08 o o
. o
= 0.07 oy
& 0.06 N s n
<5 re—
= 0.05} ]
0.04 © ° ° °
0.03L ]
0.2 —
0.1 0.2 0.3 0.4

Ty

= Our VMD-inspired Ansatz (which contains only 3 free-parameters) perfectly
captures the - and my dependence of the data.

= The magenta band corresponds to the extrapolated results at
mp, = 5.367 GeV. Effective-pole located at 2mpg, + Ar ~ 10.4(1) GeV.

= As anticipated, this contribution turns out to be one order of magnitude

suppressed w.r.t. Fpy and Fpy. 28



The strange-quark contribution F3

The hadronic tensor H;ff’ cannot be analytically continued to Euclidean spacetime

[JSm = gs57*s, H is the Hamiltonian]

(o)
HY (p k) = d / dt e'"Bs = EVE(0]77(0) T (0, —K)| B (0))
—0oo
1 _
= (0| JZ(0) —————— Ik (0, —k)| Bs (0
OFO) g Joit (0, =B B (0))

1 _
S, 1 _ nz g
+ OO, ~k) g T OB 0) = HY (0.6 + HEY (0. K)

= Analytic continuation t — —it possible only if the following positivity-conditions
are met
(n|H — E4|n) > 0, (n|H + E —mpg_|n) >0

= |n) is any of the intermediate-states that can propagate between the
electromagnetic and tensor currents.

= The second condition is equivalent to g2 < m2 (my, is the rest-energy of the
intermediate state |n))...

= ...which is violated because the smallest m,, here is 2m . In the case of the
b—quark this is instead m~. The first condition is instead always satisfied. 29



The spectral-density representation

The main idea for circumventing the problem of analytic continuation is to consider
the spectral-density representation of the hadronic tensor [E = mp, — E-]

oo oo

dE' ptv(E' k) dE' phv(E' k) i

HY (B,k) = li £ 20 _py L C AL N
7,2(5:F) leéi/ or B/ — B —ie o BB 2f Bk

= The spectral-density p*” is related to the Euclidean correlation function
CH¥(t, k), which we can directly compute on the lattice, via
= dE’ /
CH (1 k) = / e Tt (B k)
—— 27

*
lattice input

= Unfortunately, determining p*” from C*¥(t, k), which is computed on the
lattice at a discrete set of times and with a finite accuracy, is not possible

(inverse Laplace transform problem).

= The regularized quantity that we can evaluate, exploiting the
Hansen-Lupo-Tantalo method [PRD 99 '19], is a smeared version of the hadronic
tensor, obtained by considering non-zero values of the Feynman's ¢
oo
dE' p'v(E', k)
HYY (E,k;e) = _—
TS,Q( ) 2n E' — E —ie

*

30



The smeared form factor

The evaluation of the hadronic tensor at finite € leads to a smeared form factor
F‘;(xn,;a). In the limit of vanishing & one has

im F7(zy;e) = Ff(zy)
e—0t

= As we have shown in [Frezzotti et al. PRD 108 '23], the corrections to the
vanishing ¢ limit are of the form

F3(ay;€) = F(zy) + Are + A2e? + O()

= The onset of the polynomial regime depends on the typical size A(E) of the
interval around E on which the hadronic tensor is significantly varying, and one
needs ¢ < A(E).

= We evaluated Fr(z-;e) for several values of e/my, € [0.4 : 1.3], and then
performed a polynomial extrapolation in €.
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Both the real and imaginary part of the smearead form factor F;;(m,y;s) show an

almost linear behaviour at small €. Besides the polynomial extrapolations, we have

performed additional model-dependent, non-polynomial, extrapolations, to have a

conservative estimate of the possible systematics associated to the vanishing-¢ limit.
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F7 at the physical mass mp_  ~ 5.367 GeV
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= Very small - dependence observed.
v

= To have a conservative error estimate, we take the results at the largest
simulated mass mp, >~ 1.78 mp_ as a bound for the value of the form factor at
the physical point, mpy, = mp,.
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From the form factors to the branching fractions

The differential branching fraction for Bs — ptp~+ can be decomposed as a sum of
three terms

dB dBpT dBinT dBSD .
. + -+ [ =m%, (1 —2y)]
dx dx~ dx~ dx~ €

= dBpr/dx, is the point-like contribution (o< f1235)'

= It suffers from an IR-divergence (dB3/dx~ o 1/x+ at small z-), which is then
cancelled by the virtual-photon correction to Bs — ut ™ through the
Block-Nordsieck mechanism.

= dBinT/dxy is the interference contribution and depends linearly on the form
factors.

= dBgp/dx~ is the structure-dependent contribution and is quadratic in the form
factors.

Both the interference and structure-dependent contributions are infrared finite. i
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