
Training Deep 3D Convolutional Neural Networks to Extract BSM Physics Parameters
Directly from HEP Data: a Proof-of-Concept Study Using Monte Carlo Simulations
Shawn Dubey1, 2 T.E. Browder2 S. Kohani 2 R. Mandal 3 A. Sibidanov 2 R. Sinha 2

1Center for the Fundamental Physics of the Universe, Department of Physics, Brown University 2Department of Physics and Astronomy,
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Abstract

We report on a novel application of computer vision techniques to
extract beyond the Standard Model (BSM) parameters directly from
high energy physics (HEP) flavor data. We develop a method of
transforming angular and kinematic distributions into “quasi-images"
that can be used to train a convolutional neural network to perform
regression tasks, similar to fitting. This contrasts with the usual
classification functions performed using ML/AI in HEP. As a proof-
of-concept, we train a 34-layer Residual Neural Network (ResNet)
to regress on these images and determine the Wilson Coefficient C9
in MC (Monte Carlo) simulations of B → K∗µ+µ− decays. The
technique described here can be generalized and may find applicability
across various HEP experiments and elsewhere.

Problem

■ Want to determine Wilson Coefficient deviation from SM
value δCi ≡ CBSM

i − CSM
i , for B0 → K∗0µ+µ−.

■ Want to use related angular and kinematic information: θK,
θµ, χ, and q2 ≡ M 2(µ+µ−). See Fig. 1 for definitions.

■ High-dimensional fits, in the angles and q2, become
complicated in the presence of backgrounds and detector
effects.

■ Here, focus is on C9 as measurements demonstrate a potential
BSM signal [1, 2].

Figure 1: Topology for generic B → K∗ℓ+ℓ− decays [3]

Solution

■ Model developed, implemented in MC software [3].
■ Model is tunable in terms of δCi.
■ Produce high-statistics, generator-level, MC simulations for

different values of δC9, without backgrounds.
■ Bin average, normalized, q2 values in 50 equal-width bins of

cos θK, cos θµ, and χ (“quasi-images"/voxel grids, see Fig. 2).
■ Quasi-images used to train a 3D, 34-layer ResNet [4].
■ ResNet used to perform a regression task to predict δC9 [5].

Figure 2: Example of a quasi-image generated with δC9 = −2.0 [5]

Results

■ Test the trained ResNet on a test set of unseen images.
■ Statistically independent ensembles of test images generated

for different δC9 values.
■ Median δC9 inference values and the left and right standard

deviations are determined.
■ Plotted against the actual, generated, δC9 values of the test

set images. See Fig. 3.
■ ResNet performs well at predicting δC9 on unseen test set

images.

Figure 3: Linearity Test from Test Set [5]
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