

**Machine Learning based Tau Lepton Identification for the CMS High-Level Trigger deployed for 13.6 TeV** proton-proton collisions

> Valentina Sarkisovi on behalf of the CMS Collaboration

> > ICHEP 2024, Prague 17-24 July

# **Tau Leptons (τ): The Heavyweights of Particle Physics**

**Mass:** 1776.86 MeV/c<sup>2</sup> Average lifetime: 2.9x10<sup>-13</sup> s **Spin:**  $\frac{1}{2}$  (fermion) **Discovery:** 1974 **Unique feature:** only lepton that can decay to hadrons Significant role: Yukawa couplings of Higgs, CP properties of Higgs, Leptoquarks, High mass resonances, Search for Lepton Flavor Violation, etc.

## **The AI Wizard of Tau Identification**

**DeepTau v2.5** performs better than its previous version (2.1) and is used for Run-3 analyses





# **Tau Lepton Triumphs:**

# **Performance of** *τ* **reconstruction at HLT**

**\star** Studies on the reconstruction efficiency of  $\tau_{\rm h}$  leptons @ HLT performed using 2022 and 2023 (Run-3) data collected at  $\sqrt{s} = 13.6$  TeV of pp collisions at LHC ★ Hadronic tau performance is measured using the Tag and Probe technique with IsoMu24 triggers ( $p_T > 24$  GeV), focusing on  $Z \rightarrow \tau \tau \rightarrow \mu \tau_h$  decays  $\star$  Tau trigger object efficiency is calculated as follows:

Main Enhancements: balance across phase spaces, reduced mismoddeling in MC simulations

**Catching Taus: Inside the CMS Trigger System**  $\tau_{\rm h}$  reconstruction from trigger's PoV:

Level 1 (L1):

Calibration of Trigger Towers to mimic true offline response, clustering around a central seed, and merging clusters to form L1 taus



IsoMu24 Trigger + Monitoring Trigger + Offline Selection + match  $\tau^{HLT}$ 

IsoMu24 Trigger + Offline Selection

### **Performance results for various tau trigger paths:**



### <u>High-Level Trigger (HLT):</u>

#### latency AND latency constraint throughput constraint

constraint

L2 builds calorimeter jets around L1 seeds, L2.5 uses pixel track-based isolation for L2 hadronic tau leptons, followed by Particle-Flow event reconstruction and L3 tau reconstruction

Improvements for  $\tau_h$  RECO at HLT for Run-3 w.r.t. Run-2:

**L2TauNNTag@HLT** (L2 + L2.5, CNN-based algorithm for  $\tau_{\rm h}$ tagging), **DeepTau@HLT** (L3, from Particle Flow),

**New trigger paths** & many more!



#### **<u>References</u>**

- CMS collaboration, Identification of hadronic tau lepton decays using a deep neural network, 2022 JINST 17P07023
- CMS collaboration, Performance of tau lepton reconstruction at High Level Trigger using 2022 data from the CMS experiment at CERN, 2022 CERN Detector Performance Summaries, CMS-DP-2023-024
- CMS collaboration, Performance of Tau Lepton Reconstruction at the High Level Trigger using 2023 Data from the CMS Experiment at CERN, 2023 CERN Detector Performance Summaries, CMS-DP-2024-042
- CMS collaboration, Performance of the DNN-based tau identification algorithm (DeepTau v2.5) with Domain Adaptation using Adversarial Machine Learning for Run 2, CMS-DP-2024-XXX

