Hadronic Tau Tagging with the CMS detector using Domain Adaptation techniques

Paola Mastrapasqua on behalf of the CMS collaboration

Why τ ?

- Excellent probe for Electroweak interactions
- Yukawa couplings of Higgs \rightarrow fermions
- Study CP properties of the Higgs
- Search for additional Higgs bosons
- Search for BSM signatures
- Study off-shell Z/W production, flavour physics at low mass, Z polarisation, etc.

au decays to hadrons

Hadronic Tau Reconstruction at CMS

- Hadronically decaying τ (τ_h) are reconstructed by the **Hadron-Plus-**Strip (HPS) algorithm[1]: Particle Flow (PF) candidates for Hadrons + clusters of photons and e^{\pm} narrow in η and elongated in ϕ (Strip)
 - Sources of background:
 - Jets: highly collimated jets can fake any tau decay mode
 - **Muons**: mainly affect the decay with only one charged particle (h^{\pm})
 - Electrons: can emit photon and mimic the $h^{\pm}\pi^{0}$ decay
 - The misidentification in reduced by a dedicated tagging algorithm

in ~ 65% of the cases

based on Convolutional Neural Network (CNN), called **DeepTau**[2]

 $\tau^{\pm} \to \rho^{\pm} \nu_{\tau} \to \pi^{\pm} \pi^0 \nu_{\tau}$

Network structure

Input: high-level reconstructed τ_h features + info on PF candidates within and around τ_h in a $\eta \times \phi$ grid format (Grid data processed by convolutional layers) In the last stage, all features are combined and pass through 5 dense layers **Final output**: Probability of τ_h of being genuine or a misid electron/muon/jet

Model improvements

DeepTau v2.5[4] is an enhanced iteration of its predecessor (v2.1[3]) and has been deployed for Run 3 analyses. It integrates: • Domain adaptation techniques to mitigate mismodelling (with respect to real data) in Monte Carlo (MC) events used for training[5] • Shuffle and Merge to balance events across all regions of the phase space • Feature Standardisation and Hyperparameter Optimization

HO C •

Visible mass $m_{vis}(\mu, \tau_h)$ in $Z/\gamma^* \to \tau \tau \to \mu \tau_h$ events, applying DeepTau v2.1 (left) and the new DeepTau v2.5 (right)

Visible decrease in jets background , around 30%

Data-to-simulation correction factors for genuine τ_h

- Algorithm performance slightly differs between MC and Data \rightarrow Need for calibration

CMS Preliminary	59.7 fb⁻¹ (13 TeV)
	- · · · · · · · · · · · · ·
-	-

- -Measurement based on tag-and-probe technique with $Z/\gamma^* \rightarrow \tau_{\mu}\tau_h$ events
- Correction factors comparison between DeepTau v2.5 and v2.1 on 2018 dataset - Correction Factors closer to unity for v2.5
- Improvement most prominent at low p_T
- -The new version of DeepTau succeeds in reducing MC mismodelling with respect to Data

ICHEP 2024 PRAGUE	Detector Performance Summary Note CMS-DP-2024-XXX Performance of the CNN- based tau identification algorithm with Domain Adaptation using Adversarial Machine Learning for Run 2	 [1] CMS Collaboration. "Performance of reconstruction and identification of τ leptons decaying to hadrons and v_T in pp collisions at s=13 TeV". In: Journal of Instrumentation 13.10 (Oct. 2018), P10005–P10005. issn: 1748-0221. doi: 10.1088/1748-0221/13/10/p10005. url: http://dx.doi.org/10.1088/1748-0221/13/10/P10005. [2] CMS Collaboration. "Identification of hadronic tau lepton decays using a deep neural network". In: Journal of Instrumentation 17.07 (July 2022), P07023. doi: 10.1088/1748-0221/17/07/P07023. url: https://dx.doi.org/10.1088/1748-0221/17/07/P07023. [3] CMS Collaboration. "Performance of the DeepTau algorithm for the discrimination of taus against jets, electron, and muons". In: (2019). url: https://cds.cern.ch/record/2694158. [4] Lucas Russell. "Identification of Hadronic Tau Lepton Decays with Domain Adaptation using Adversarial Machine Learning at CMS". Imperial College.
		tau identification nm with Domain ion using Adversarial 2 Learning for Run 2 cds.cern.ch/record/2694158. [4] Lucas Russell. "Identification of Hadronic Tau Lepton Decays with Domain Adaptation using Adversarial Machine Learning at CMS". Imperial C London, 2022. url: https://cds.cern.ch/record/2827366. [5] CMS collaboration. "A deep neural network to search for new long-lived particles decaying to jets". In: Mach. Learn. Sci. Tech. 1 (2020), p. 035 10.1088/2632-2153/ab9023. arXiv: 1912.12238 [hep-ex].