YBF PRODUCTION MODE

The Higgs boson decaying into a quark pair is observed with most of the sensitivity associated with a vector boson V (V=W,Z) in the Higgs-strahlung \ - ‘ p
production mode. Furthermore, the second most frequent Higgs boson production mechanism, the Vector Boson Fusion (VBF) can be exploited to study <
these channels. The VBF mechanism involves proton radiating weak vector bosons that fuse to form the Higgs boson. Its signature is represented by a jet- v q

for the Run 2 data with ATLAS has been provided. [1]

dominated final state: two quarks with a large rapidity gap and two b- or c-tagged jets coming from the Higgs boson decay. A VBF H — bb channel analysis
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Detecting the decay of the Higgs boson into a quark pair (bb or ¢c) is challenging due to the strong QCD background in proton-proton
collision events at the Large Hadron Collider. In the dominant production mode, gluon-gluon fusion (ggF), these channels are

overwhelmed by non-resonant QCD and multi-jet background. Studies of these channels are necessary to enhance the effect of
Beyond the Standard Model physics on the Higgs coupling with quarks. Neural networks are used in these analyses to improve the

sensitivity to signal events. Several studies on these channels are being conducted at the ATLAS and CMS experiments at the Large
Hadron Collider of CERN.

ADVANCED DECORRELATING TECHNIQUES IN DNN-BASED

CLASSIFICATION FOR YBF HIGGS BOSON ANALYSIS
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. A dataset of VBF H — bb signal and QCD multijet background has _ I * In thc.a lconjcext of a bl.nary classifier used for signal vs backgrf)und
been simulated integrating multiple frameworks: MadGraph, 10%1 I classification, selecting basgc.l o'n the score refell"s. to choosing a
Pythia, and Delphes. The response of particle detectors to the 3 £ | — threshold value on the classifier's output probability or score.
final-state particles has been produced with the fast simulation it 103 - I
of the ATLAS detector: I * Adjusting this thr.e.shold allows you tq .COHtI.‘OI the trade-off
| : | between true positives (correctly identified signals) and false
e eali2) e o 102 . ﬁ d positives (backgrounds incorrectly identified as signals),
m;; Invariant mass of the VBF jet pair o 60 80 100 12'0[G V]140 160 180 200 .0_0 0.2 0.4 0.6 0.8 1.0 optlmIZIHg the ClaSSiﬁer'S performance based on the SpeCifiC
Dr,jj Transverse momentum of the VBF jet pair I requlrements of your apphcatlon.
balance Ratio of the vectorial and scalar sums of the
Pr transverse momenta of by , by, j; and j,  In High Energy Physics analysis, Deep Neural Networks (DNN
— Background Data & gy rhy y p
(=2t 1 2 Asymmetry in the VBF jet transverse momenta B h(s | x, 0) are widely used to enhance the detection of rare signal events.
An(bb, ) Separation in 7) between the b-tagged jet pair and the Classifier DNN : ,| Binning However, the application of DNN in classifications for physical
_ VBFjetpalr Sienal Data Classifier scores | _the Scores events often involves the correlation of the latter with physical
Ap(bb, jj) Separation in ¢ between the b-tagged jet pair and the gn -y
] VBF jet pair 8 quantltleS.
- A¢(bb) tanh An(bb) Measure of the relative angle of.n and ¢ between the B. .. B
on (an (457 /1ann (257) two b-tagged jets 51 Slf * This correlation could bring to the mis-identification of signal
Mjets Number of jets with pr > 20 GeV and || < 4.5 events and sculpting effects on the feature distribution.
Minimum separation in R between the (sub)leading
min AR (j1(2)) VBF jet and any jet if is not a part of the b-tagged or Y _ _ ]
VBF jet pair Measure the 91(B) ... 3 (B) Estimation of § with the  This sculpting effect occurs because of the correlation between
e Number of tracks matched to the (sub)leading VBF jet correlation of the [« 5; () j’k (s) < selected events at a fixed the DNN tagger and the Higgs boson mass. As a result, QCD
classifier with y ek signal efficiency events with a mass similar to the Higgs boson are misclassified
CORRELATION METRIC as signals.
* The Jensen-Shannon divergence is defined as 10% 1 When it o d ating the dassifieriri 0014 |_L|-LL = oo
1 | . en i1t comes to decorrelating the classifier into the o o
Py, JSD(P|Q) = 2 (KL(P|IM) + KL(Q|IM)) workflow, two main strategies can be employed. These . =l
with M = TQ and KL the Kullback-Leibler divergence [2]. strategies involve different approaches that can be used P e
* In our case, the divergence is used to measure the entropy between . depending on the system'’s specific requirements. e _,_.—l"__'_.=
. . . . . . 2,102
the normalised mass distributions of the background jets passing -~ . _rl_',r'_' E__-q__;i
and total, respectively, a given jet tagger cut: * The classifier can be decorrelated during training. 8
Néol?ss (m) Nt (m) * The classifier can be decorrelated after training, acting o m Leosssscsssssiiteeseres
N g bkg . e - REEE
JSD(P||Q) =JSD | = R S e R T directly on the classifier scores. : i d
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ADVERSARIAL NEURAL NETWORK CONDITIONAL NORMALIZING FLOW
The Adversarial Neural Network (ANN) acts on the classifier during training. Its goal is to predict the 10° 5 * A normalizing flow is an invertible map between two
di-b-jet invariant mass bin for each event using the classifier’s output [3]. . distributions. [4]
@ 107!
Input features . . . :
N e P ecork A conditional normalizing flow (CNFlow) pg can approximate
X1 1072 ; a data distribution pp(h(x)|m) by defining a neural network
_ Task: Task: . . . . . .
: — Binary classification: h( | x,0 .| Decorrelate the classifier during f 0 (h(x); m) that is invertible given m and a base distribution P
- signal vs background | 0% training 107 4 that is independent of m.
Xk 0.0 0.2 0.4 0.6 0.8 1.0
Loss function: Loss function: Background NN scores
pinary Cross Entropy Loss i  The model is fit to data by maximizing the log-likelihood under
\/ - .
Modified loss function of the network: L=Ly— ALy, the change of variables formula:
1.0 A
Where 1 is an additional hyperparameter that weights the action of the ANN on the classifier. . log pg(h(x)|m) = logp(fo(h(x),m)) + log|detjg,(h(x),m)|
Two training steps: 5 o where /¢, is the Jacobian of fj .
1. Train the classifier on signal and background with loss L °
2. Train the adversarial on background only with loss L 4 7 * The CNFlow are a fast and simple method that can be
. applied directly on classifier scores.
4 — wwa=o e Classifier: 4 hidden linear layers with 64 nodes me <0GV
3 — ANNA=100 00-—* - - 0o 05 — + The target distribution in this studies is a uniform distribution.
: s e Adversarial: 4 hidden linear layers with 128 nodes Background NN scores
T
g W E—— * The ROC curves show the classifier performance at a fixed | -8 A =100 F]N AL RESULT
5 I~ architecture trained for 100 epochs with A = 0,10,100. -
a3 1° h _ Eiha ANN aff be classif " q * The performance of CNFlow in decorrelation is superior to
ehac(tilon 0 t1 e f a ec};cs t e_c assifier performance due ] that of ANN with A=100.
A Bie B 55 05 Yo to the decorrelation from the mpp. ~ 10° ] « The CNFlow can be applied to scores of different classifiers.
Signal efficiency
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* The correlation of the DNN with my; can be measured with o
JSD at different signal efficiencies. 10¢ L i
e The larger 1/]JSD the more the classifier is decorrelated. i 10° _ _
: * Thanks to the decorrelation we can avoid the background
+ The correlation depends on the A value. 107 - sculpting and enhance the sensitivity to rare signals as the
VBF H bb. + Yy
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