dN/dx Reconstruction with Machine Learning for Drift Chamber

Guang Zhao¹, Zhefei Tian², Zhenyu Zhang², Linghui Wu¹, Mingyi Dong¹, Gang Li¹, Shengsen Sun¹, Francesco Grancagnolo³, Nicola De Filippis³

¹ Institute of High Energy Physics, China ² Wuhan University, China ³ Istituto Nazionale de Fisica Nucleare, Italy

1. Introduction

1.1 Cluster counting (dN/dx) as a breakthrough in PID techniques

- > PID is essential for flavor physics in future large collider experiments
 - Suppressing combinatorics
 - Distinguishing between same topology final-states
 - Adding valuable additional information

- \succ Drift chamber with cluster counting (dN/dx) could provide powerful PID
 - Poisson distributed \rightarrow No tails \bullet
 - Small fluctuation \rightarrow Potentially improve the resolution (from dE/dx) by a factor of 2

1.2 dN/dx reconstruction

• Determine the # of primary electrons in the waveform

2. Supervised model

2.1 LSTM-based peak finding

- **LSTM:** A specified recurrent neural network (RNN) that deals with the vanishing gradient problem; Can handle long sequences efficiently
- **Peak-finding:** Waveform as sliding windows; Binary classification of signals and noises

2.2 DGCNN-based clusterization

2.3 PID performance

- Supervised model is more efficient for pile-up detection and secondary lacksquareelectrons removal
- Supervised model has a **10% improvement** for K/pi separation
- dN/dx resolution is less than 3% for high momentum K/pi

Reconstruction results

- **DGCNN:** A specified graph neural network (GNN) that incorporates local information and stacked to learn global properties, which is very suited for clusterization
- **Clusterization:** Peak timing as the node feature. Edges are initially connected by timing similarity; Binary classification of primary and secondary electrons

3. Semi-supervised domain adaptation

- 3.1 Challenges for applying supervised model on real data
- Imperfect simulation
- Incomplete labels in real data

3.3 Results

- Validated by pseudo data (Performance close to supervised model)
- Applying to the **CERN testbeam data**, the DA model is more powerful than the traditional algorithm

dN/dx resolution

3.2 Solution: Domain adaptation

• Transfer knowledge between simulation and real data domain via optimal transport

Computer Physics Communications 300, 109208 (2024)

4. Conclusion

- For simulated samples, the supervised model has 10% improvement on K/pi separation w.r.t. traditional algorithm.
- For testbeam data, the semi-supervised domain adaptation model successfully transfers information from simulation and achieves stable performances.

Contact

Guang Zhao (Institute of High Energy Physics) Email: zhaog@ihep.ac.cn

Institute of High Energy Physics **Chinese Academy of Sciences**

