dN/dx Reconstruction with Machine Learning for Drift Chamber
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1. Introduction

1.1 Cluster counting (dN/dx) as a breakthrough in PID techniques > Drift chamber with cluster counting (dN/dx) could provide powerful PID
» PID is essential for flavor physics in future large collider experiments e Poisson distributed = No tails
* Suppressing combinatorics e Small fluctuation =» Potentially improve the resolution (from dE/dx) by
* Distinguishing between same topology final-states a factor of 2
* Adding valuable additional information 1.2 dN/dx reconstruction

* Determine the # of primary electrons in the waveform
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2. Supervised model
2.1 LSTM-based peak finding 2.3 PID performance
 LSTM: A specified recurrent neural network (RNN) that deals with the * Supervised model is more efficient for pile-up detection and secondary
vanishing gradient problem; Can handle long sequences efficiently electrons removal
* Peak-finding: Waveform as sliding windows; Binary classification of * Supervised model has a 10% improvement for K/pi separation
signals and noises * dN/dx resolution is less than 3% for high momentum K/pi
2.2 DGCN N-based CIUSterlzatlon Reconstruction results . dN/dx resolution
* DGCNN: A specified graph neural network (GNN) that incorporates . — Primary siaczans (HC b
local information and stacked to learn global properties, which is very @ Dotected primary clactrons
suited for clusterization : ML
* Clusterization: Peak timing as the node feature. Edges are initially : A w
connected by timing similarity; Binary classification of primary and ‘ l—
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3. Semi-supervised domain adaptation 3.3 Results
* Validated by pseudo data (Performance close to supervised model)
3.1 Challenges for applying supervised model on real data * Applying to the CERN testbeam data, the DA model is more powerful
° |mperfect SimulatiOn than the trad|t|0na| algO”thm
_ ROC curve for pseudo data Peak-finding results
* |ncomplete labels in real data . R
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Sembsupervised domain adapeatior * For testbeam data, the semi-supervised domain adaptation model successfully
Computer Physics Communications 300, 109208 (2024) transfers information from simulation and achieves stable performances.
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