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Introduction
▶ Monte Carlo simulations of calorimeter

showers are very time demanding. Genera-
tive deep learning offers a faster alternative.

▶ Generative adversarial networks (GANs)
can generate high-fidelity samples.

▶ However, GANs often suffer from mode col-
lapse.

▶ Can we increase the diversity of generated
samples using ensembling approach?

Training Data
▶ ECAL showers simulated for a prototype of

an ILD detector.
▶ Events induced by a single electron (avail-

able on Zenodo.org [1]).
▶ Initial particle energies in range 2−500 GeV.
▶ Fixed incident angle of 60◦.
▶ Energy depositions recorded in a cube grid

with 25 × 25 × 25 cells where the layers
in z axis correspond to the ECAL layers.

▶ High dynamic range of cell energies, high
sparsity of images.

Fig. 1: 2D plots of simulated energy depositions in
the ECAL.

Baseline GAN
▶ Custom conditional GAN based on 2D con-

volutional neural networks [2].
▶ 3-branch architecture in both generator and

discriminator.
▶ Custom loss with 3 components:

▶ true/fake loss (BCE),
▶ loss on prediction of primary energy

(MAPE),
▶ loss on reconstruction of total deposited

energy (MAPE).
▶ Training time: 4 hrs (GPU Tesla V100 32GB).
▶ Good quality of individual samples.
▶ Suffers from the mode collapse.

Conclusion
▶ An ensemble of 10 Conv2D GANs was suc-

cesfully trained.
▶ Ensembling improved average features such

as shower shapes and sampling fraction.
▶ By using the ensemble, we improved the

variability of generated showers.
▶ However, the t-SNE algorithm distinguished

samples generated by different GANs.
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Ensemble Structure and Training
Adapting the AdaGAN ensembling approach [3]
to the Conv2D GAN for shower generation.

Steps:

1. Train the first GAN.
2. Retrieve the discriminator predictions for all

training data.
3. Assign weights to training data based on the

true/fake predicted probabilities:
▶ ≈ 0.5 → low weight,
▶ ≈ 1.0 → high weight.

4. Use weighted training data to train the next
GAN for the ensemble. Fig. 2: Diagram of the ensemble training loop.

Sample Quality
Shower shapes The ensemble of GANs outperforms the single GAN model in matching the average
shower shapes. A significant improvement is observed around the edges of the cube grid region.

Sampling fraction is the ratio
between the sum of deposited
energies and the initial particle
energy. The ensemble outper-
forms the single GAN model in
matching this quantity.

Sample Variability
PCA on training data (left) Principal component analysis (PCA) fitted on the training data. The 1st
and 2nd principle components (PCs) are visualized as a scatter plot.
PCA on generated data (right) Samples generated from ensembles of 1 − 10 GANs projected into
the 1st and 2nd PCs fitted on the training data.
Colors of the points correspond to the initial particle energy in GeV.

t-SNE Visualization of the training samples (top) and ensemble-generated samples (bottom).


