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Introduction
▶ Monte Carlo simulations of calorimeter

showers are very time demanding and find-
ing a faster and versatile alternative is of
a high interest.

▶ Masked modeling is an established tech-
nique for unsupervised representation learn-
ing achieving remarkable results in the NLP
domain.

▶ Can the masked modeling be used to learn
rich representations of calorimeter showers?

▶ We present an adaptation of the masked
modeling with transformer network to
calorimeter simulations. We trained our
model on general calorimeter showers
recorded in a cylindrical readout mesh.

Training Data
▶ ECAL showers induced by a single electron

(available on Zenodo.org [1]).
▶ Initial particle energies: 64 GeV, 128 GeV,

and 256 GeV.
▶ Energy depositions recorded in a cylindri-

cal readout mesh with 15 × 50 × 24 cells in
the R × φ× Z coordinates.

▶ High dynamic range of pixel values spanning
over the 10−4 − 102 GeV range.

Preprocessing Images
▶ Scaling cell energies:

▶ The cell energies are divided by the initial
particle energy.

▶ All values are scaled to the range [0, 1].
▶ Converting an image to a sequence:

▶ Following the ViT example [2].
▶ Dividing the cylindrical mesh into smaller

segments (patches).
▶ Splitting in R and Z direction only be-

cause of the rotational symmetry of the
shower images.

▶ Embedding individual patches:
▶ Embedding each patch into lower-

dimensional space, as well as the patch
positions.

▶ Adding the patch and position embedding
vectors (element-wise sum).
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Fig. 1: Image-to-sequence transformation.
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Fig. 2: Complete design of the model.

Image preprocessing First, the shower images are divided into patches to create a sequence. After-
wards, random patches are masked (all values replaced by zeros) and all patches are transformed
into the embedding space.
Reconstruction The encoder-like network with self-attention blocks uses bi-directional information
from the input sequence to reconstruct masked patches. New patch representations are upsampled
to the original dimension and the cylindrical mesh is reassembled.
Training The embedding layers loop over patches, while the encoder loops over images (sequences
of embedded patches). For this reason, each batch is split into mini-batches of 8 images and the
weights in the first part of the model are adjusted after each mini-batch.
Loss The quality of reconstructed images is measured by the MMD loss (maximum mean discrep-
ancy) with the multi-scale kernel.

Results
Shower shapes Depiction of average profiles along the main axis Z of the cylinder. The model
reconstructs the showers shapes well for all tested initial particle energies without explicitly providing
its value.

Cell energies Histograms of the cell energies, visualised in a log10 scale. We observe solid results
for 10−1 − 101 GeV cells. The model currently struggles to replicate the high-energy depositions
that are rare.

2D plots Example of 2-dimensional projections of energy depositions for one shower induced by a
64 GeV electron. Overall, energy distributions are correctly replicated and the plots have the desired
granularity. We observe a surplus of low-energy cells instead of empty cells.

Conclusion
▶ We demonstrated that a transformer-based

model can learn good representations of
ECAL showers using the masked modeling
approach.

▶ The model is able to adapt to different values
of primary particle energy based solely on
the input embeddings and generate showers
with granularity in individual cells.
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