

18-24 July 2024 Prague Czech Republic

Performance and ageing studies on Eco-Friendly Resistive Plate Chamber detectors

Dayron Ramos Lopez on behalf of RPC EcoGas@GIF++ Collaboration dayron.ramos.lopez@cern.ch

RPCs in High Energy Physics experiments

Gaseous mixture for RPC operation at CERN

TFE
$$(C_2H_2F_4) \sim 95\% + iC_4H_{10} \sim 4-5\% + SF_6 < 1\%$$

- High density of primary ion-electrons pairs → high RPC efficiency
- Good quenching properties and electronegativity → very low streamer probability
- High rate capability

Nowadays increased attention on GHGs emissions: F-gas regulation aims in limiting emissions, GHGs availability, price, GHGs are used because needed to achieve specific detector performance and/or long-term stability

Greenhouse gas usage at CERN (1)

LHC experiments - Particle detection
 LHC experiments - Detector cooling

Heating (gas + fuel)

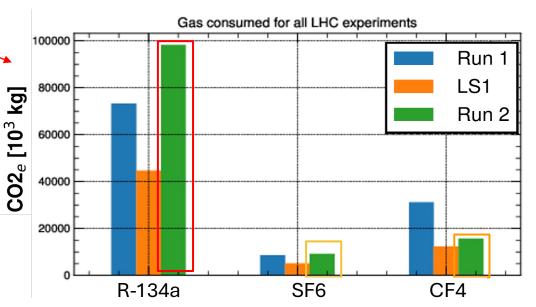
Electricity consumption (EDF)
 Electricity consumption (Hungary)

- CERN Environment Report 2019-2020
- 2021: CERN's Year of Environmental Awareness.
- CERN Environment workshop: 12 and 13 October 2022
- CERN Environment Report 2021-2022

Emissions from particle detection

180000

100000


100000

100000

100000

Total CERN emissions during 1 year of Run 2 ~ **200 000 tCO2e** ~ **50%** from particle detectors

- C₂H₂F₄/R-134a biggest contributor → leaks from RPC detector, used for ALICE, ATLAS and CMS systems
- CF₄ → due to operation of CSC and RICH systems
- SF₆ → Related to RPCs as R-134a

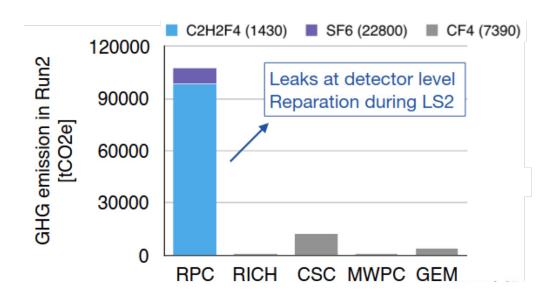
2017

2018

Run2

2019

LS₂


2020

60000

40000

20000

Greenhouse gas usage at CERN (2)

Limiting the total amount of the most important F-gases that can be sold in the EU from 2015 onwards and phasing them down in steps to one-fifth of 2014 sales in 2030.

Banning the use of F-gases where less harmful alternatives are widely available.

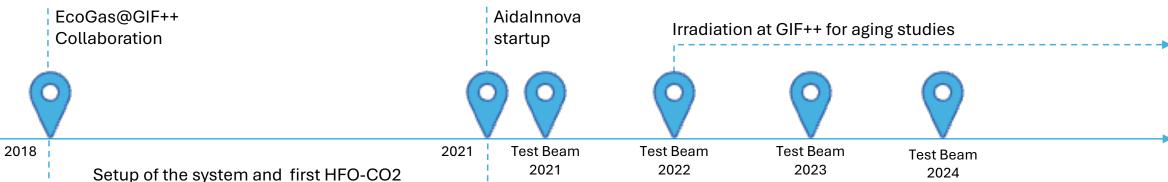
Preventing emissions of F-gases from existing equipment by requiring checks, proper servicing and recovery

New gaseous mixtures candidates

• Requirements: low GWP, low toxicity, not flammable and detector performance comparable with standard one

In industrial applications $C_2H_2F_4$ is being replaced with HydroFluoro- Hydro-Fluoro-Olefin (HFO) Olefins (HFOs)

- the replacement of C2H2F4 with HFO moves the operating voltage at much higher values (es. >13kV for 2mm gap)
- the addition of CO2 helps in decreasing the WP


	TFE (%)	HFO-1234ze (%)	CO ₂ (%)	iC ₄ H ₁₀ (%)	SF6 (%)	GWP	CO ₂ e (g/l)
STD	95.2	-	-	4.5	0.3	1485	6824
ECO2	-	35	60	4	1	476	1522
ECO3	-	25	69	5	1	527	1519
Density (g/l)	4.68	5.26	1.98	2.69	6.61	-	-
GWP	1430	7	1	3	22800	-	-

C=C double bond
fluorine-containing
hydrogen-containing

GWP with respect to CO2, and their CO2e, in grams, for one litre of mixture

Values mainly driven by SF6

EcoGas at GIF++ collaboration timeline

mixtures tested under irradiation at GIF++

ECO1: CO_2 50%, HFO 45%, iC_4H_{10} 4%, SF₆ 1% High current increase of dark current After ~ 20 mC/cm2 integrated charge

ECO2: CO₂ 35%, HFO 60%, iC₄H₁₀ 4%, SF₆ 1%

ECO3: CO₂ 25%, HFO 69%, iC₄H₁₀ 5%, SF₆ 1%

STD, ECO2 and ECO3 mixtures under performance test and irradiation

Transversal collaboration to find an ecological gas mixture

Beam tests and irradiation campaigns, performance analysis replacement for RPC operation at CERN

of chambers from each experiment

2021

2018

Setup of the system and first HFO-CO2

Many colleagues, PhDs, radiation at GIF++ students and technicians!!!

The RPC ECOgas@GIF++ Collaboration: L. Quaglia¹, D. Ramos^{2,3}, M. Abbrescia^{6,3}, G. Aielli²¹, R. Aly^{3,8}, M. C. Arena¹⁷, M. Barroso¹¹, L. Benussi⁴, S. Bianco⁴, D. Boscherini⁷, F. Bordon¹⁶, A. Bruni⁷, S. Buontempo¹⁸, M. Busato¹⁶, P. Camarri²¹, R. Cardarelli¹³, L. Congedo³, D. De Jesus Damiao¹¹, M. De Serio^{6,3}, A. Di Ciacco²¹, L. Di Stante², P. Dupieux¹⁴, J. Eysermans¹⁹, A. Ferretti^{12,1}, G. Galati^{6,3}, M. Gagliardi^{12,1}, S. Garetti^{12,1}, R. Guida¹⁶, G. Iaselli^{2,3}, B. Joly¹⁴, S.A. Juks²⁴, K.S. Lee²³, B. Liberti¹³, D. Lucero Ramirez²², B. Mandelli¹⁶, S.P. Manen¹⁴, L. Massa⁷, A. Pastore³, E. Pastori¹³, D. Piccolo⁴, L. Pizzimento¹³, A. Polini⁷, G. Proto¹³, 1% G. Pugliese^{2,3}, G. Rigoletti¹⁶, A. Rocchi¹³, M. Romano⁷, A. Samalan¹⁰, P. Salvini⁹, R. Santonico²¹, G. Saviano⁵, M. Sessa¹³, S. Simone^{6,3}, L. Terlizzi^{12,1}, M. Tytgat^{10,20}, E. Vercellin^{12,1}, M. Verzeroli¹⁵, N. Zaganidis²

2021

STD, ECO2

Test Beam

startup

Around 24 universities, institutes and research centers!!!

²Politecnico di Bari, Dipartimento Interateneo di Fisica, via Amendola 173, 70125 Bari, Italy.

4 INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati (Roma), Italy. Sapienza Università di Roma, Dipartimento di Ingegneria Chimica Materiali Ambiente, Piazzale Aldo Moro 5. 00185 Roma, Italy. Aldo Moro 5, 00185 Roma, Italy.

Università degli studi di Bari, Dipartimento Interateneo di Fisica, via Amendola 173, 70125 Bari,

Italy.

⁷INFN Sezione di Bologna, Viale C. Berti Pichat 4/2, 40127 Bologna, Italy.

Helwan University, Helwan Sharkeya, Helwan, Cairo Governorate 4037120, Egypt.

10 INFN Sezione di Pavia, Via A. Bassi 6, 2/100 ravia, Italy.

11. Dept. of Physics and Astronomy, Proeffuinstraat 86, B-9000 Ghent, Belgium. Gnent University, Dept. of Physics and Astronomy, Programmer of the Company of th Janeiro - R.J., 20050-013, Brasil.

12 Università degli studi di Torino, Dipartimento di Fisica, Via P. Giuria 1, 10126 Torino, Italy.

13 Via della Bisona Caientifica 1 00122 Roma Italy.

Universita degni studi di Torino, Dipartimento di Fisica, Via 1. Giuna 1, 10120 Torino, via 1.

13 INFN Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy. 14 Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique

Corporaniaire RP 10448, F-63000 Clermont-Ferrand, France. Corpusculaire, BP 10448, F-63000 Clermont-Ferrand, France.

Université Claude Bernard Lyon I, 43 Bd du 11 Novembre 1918, 69100 Villeurbanne, France.

17 Università degli studi di Pavia, Corso Strada Nuova 65, 27100 Pavia, Italy. 18 Università degli studi di Pavia, Corso Strada Nuova 65, 2/100 ravia, 16a1y.
INFN Sezione di Napoli, Complesso Universitario di Mone S. Angelo ed. 6, Via Cintia, 80126
Napoli, Italy.

Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.

Disiplan 2 1050 Proceeds Relative 20 Vrije Universiteit Brussel (VUB-ELEM), Dept. of Physics, Pleinlaan 2, 1050 Brussels, Belgium. 21 Universitè Brussel (VUB-ELEM), Dept. of Physics, Piennaan 2, 1000 Brussels, Dept. Università degli studi di Roma Tor Vergata, Dipartimento di Fisica, via della Ricerca c. 1.00133 Roma. Italy.

22 Universidad Iberoamericana, Dept. de Fisica y Matematicas V Skorea University, 145 Anam-ro, Score

Université Paris-Saclay, 3 rue Joliot C

High-rate tests on resistive plate chambers operated with eco-friendly gas mixtures

Preliminary results on the long term operation of RPCs with eco-friendly gas mixtures under irradiation at the **CERN Gamma Irradiation Facility**

Performance of thin-RPC detectors for high rate applications with eco-friendly gas mixtures

Setup at GIF++

- 12.2 TBq ¹³⁷Cs + H4 SPS beam line
- Radiation intensity attenuated by combination of filters

Gas mixer unit to provide up to 4 component gas mixture (humidified)

• C₂H₂F₄, iC₄H₁₀, SF₆, CO₂, Ar, HFO

Downstream

Bunker GIF++

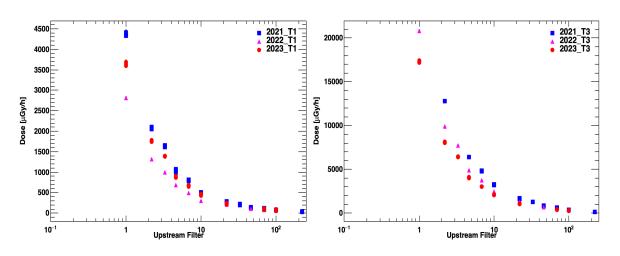
Trolley 3 (T3) Trolley 1 (T1)

beam

Upstream

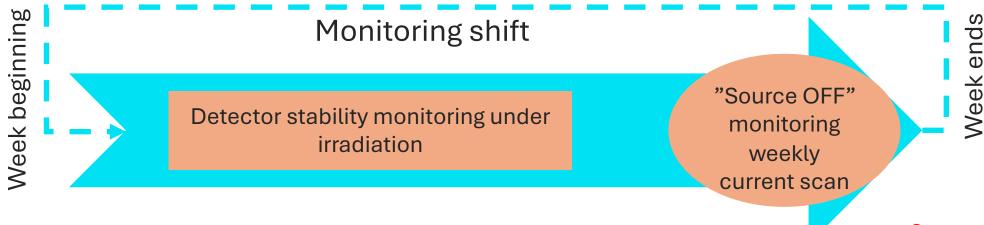
I form

Trolley 2 (T1)


RPCs: ALICE (2 mm), EP-DT (2 mm), CMS (2mm, double gap), CMS_Upgrade (1.4 mm, double gap), LHCb/SHIP (1.6 mm), ATLAS (2 mm)

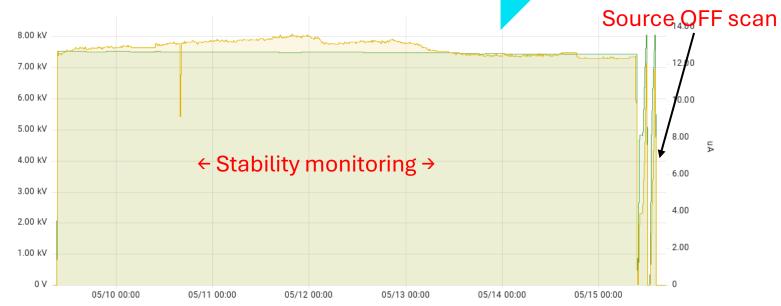
Aging studies

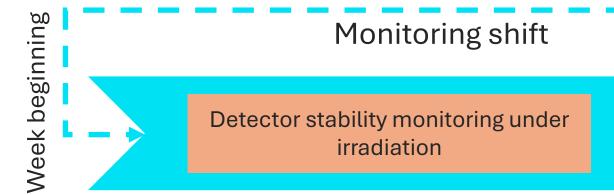
Monitoring of currents


Detector performance (beam tests)

CMS FEB for CMS RPC and KODEL FEB for CMS_Upgrade ALICE FEB FEERIC for ALICE and LHCb/SHIP RPCs Dedicated digitizer for EP-DT and ATLAS RPCs

Aging studies

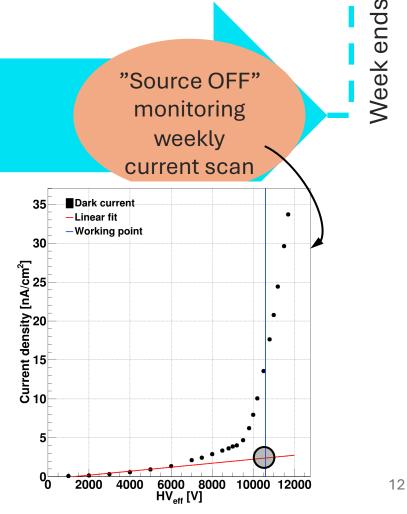

How our aging program works?


- Detector HV switched ON at fixed value during all week → Stability monitoring
- HV is corrected every minute

$$HV_{app} = HV_{eff} \left[(1 - \alpha) + \alpha \frac{P}{P_0} \frac{T_0}{T} \right]$$

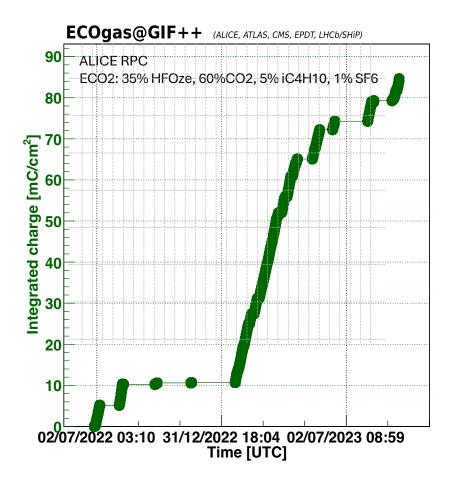
• Detectors are exposed to the γ flux from the ^{137}Cs source \rightarrow current and voltages are monitored by shifts

How our aging program works?



Linear fit between 0 and 5 kV to extrapolate Ohmic component of the dark current at the irradiation voltage

- → This current does not necessarily flow through the gas
- → Subtracted from the current absorbed under irradiation to calculate the integrated charge density



Current density monitoring over time as function of integrated charge density

Integrated charge on time

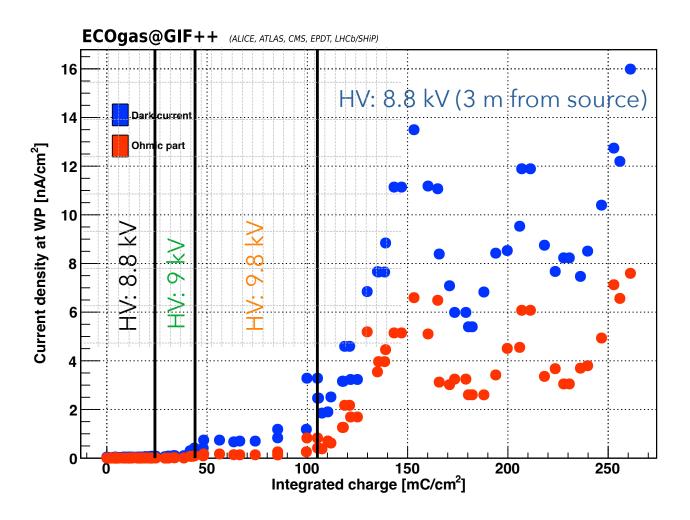
By operating all detectors with ECO2

GAP	Q _{int} (mC/cm ²)	Period
ALICE	85	2022-2023
ATLAS	125	2022-2023
EPDT	110	2023-2024
CMS	~200	2022-2024
CMS_Upgrade	~45	2023-2024
LHCb/SHiP	260	2022-2024

Total integrated (accumulated) charge by gaps by irradiation period

Different maximum values of integrated charge reached by the different RPCs

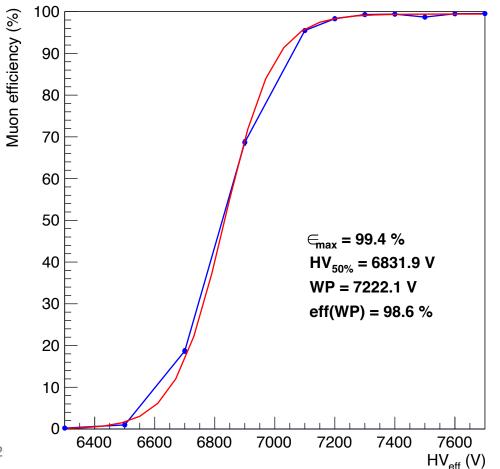
→ Efficiency corresponding to irradiation voltage is not the same on all detectors + different distances from the Cs source + different irradiation periods


Aging studies results

Total and Ohmic dark currents

Effective high voltage of LHCb/SHiP RPC moved in steps up to 9.8 kV

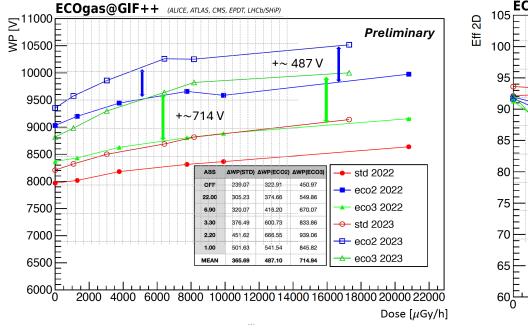
- → Current trend stable over time
- When HV increased
- → Current increase + appearance of instabilities after 100 mC/cm² (under investigation)

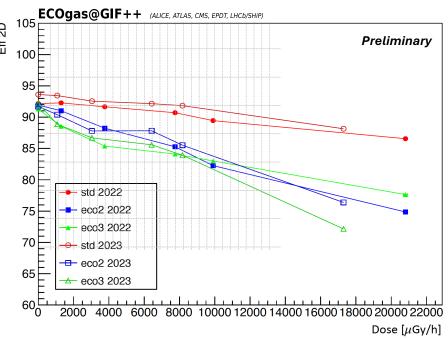

Similar trend for dark current and for all chambers in the collaboration

Performance verification

Some definitions

Example of high voltage scan of a chamber in absence of gamma background

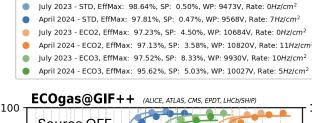

Logistic function for efficiency fit

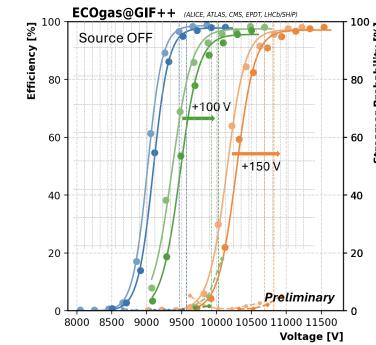

$$\varepsilon(HV) = \frac{\varepsilon_{max}}{1 + e^{-\beta(HV - HV_{50})}}$$
Working point
$$WP = \frac{\log 19}{\beta} + HV_{50} + 150 \text{ V}$$

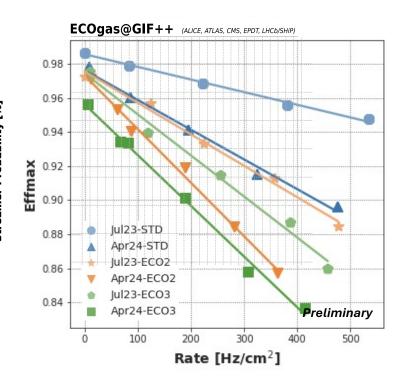
Effective high voltage corrected to be applied Environmental correction to the high voltage also applied during irradiation (see slide 11)

Performance verification (1)

LHCb/SHiP RPC – 110 mC/cm² Efficiency and Working Point

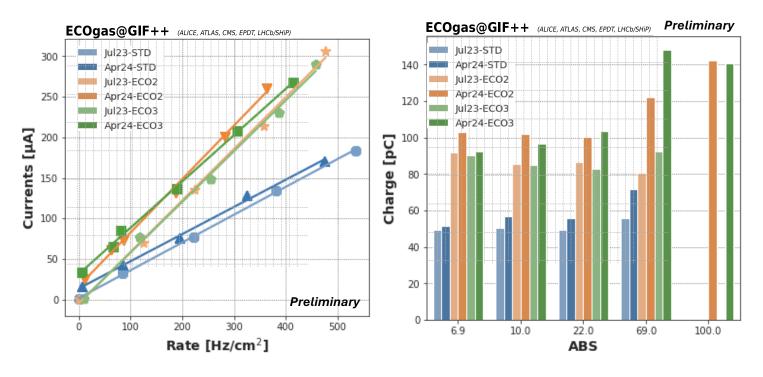





- Increase of WP voltages after 1 year of irradiation. In average higher increase when the operation was with ECO3, around 700 V, while with ECO2 around 500 V
- The 2D efficiency shows similar trend for the ecological candidates and not significant drop is observed

Performance verification (2)

EP-DT RPC – 110 mC/cm² Efficiency and Streamer Probability



- Between the three mixtures, the efficiency drops at maximum ~2% (depending on the mixture and ABS filter) - which could result from the alignment
- The streamer probability is reduced for all runs for all the mixtures taken; the ECO3 shows more streamers than ECO2
- The working point is increased, ECO2 shows a higher increase in working point than ECO3
- The maximum efficiency has dropped compared to the last test beam for all mixtures

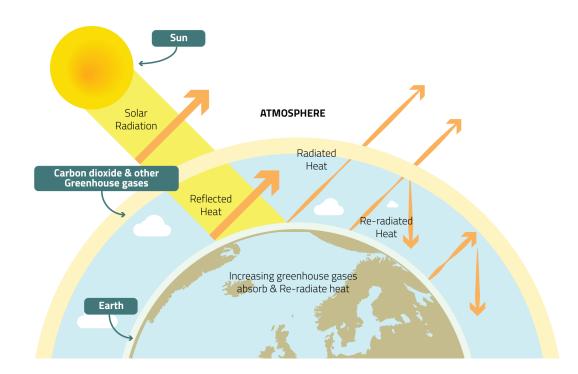
Performance verification (3) EP-DT RPC - 110 mC/cm²

Currents and total charge

- The **currents** with respect to the rate are a little higher than before irradiation, for all rates tested → around **10% increase** irrespective of the gas mixture
- The slopes for the STD and ECO2 are similar to the last year, only for the ECO3 mixture, the currents are slightly decreasing at higher rates.
- In terms of charge per ABS filter, small increases have been observed, consistent with the higher currents.
- Between the mixtures, for the STD, the charge is lower, but for ECO2 and ECO3 they are similar on average.

Summary

- Involved in the CERN phase-down of fluorinated GHG emissions, the RPC EcoGas@GIF++ collaboration has joined efforts to find a solution for the environmentally friendly operation of RPCs
- In 2022, a systematic **irradiation campaign** started, and the performance of each detector is annually verified during **beam tests**
- From aging studies, a smooth increase trend of the total dark current has been observed (also increases in ohmic contribution) → further discussion needed
- No major degradation of the detector performance has been verified from the beam test campaign at GIF++. Increases in Working Point values were observed in all RPCs after irradiation.


THANKS!

dayron.ramos.lopez@cern.ch

Backup slides

Global Warming Potential (GWP) and GHG emissions at LHC

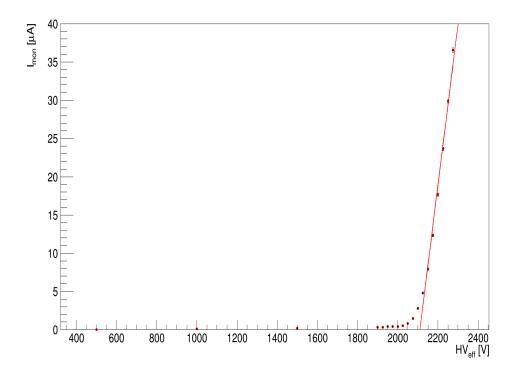
Greenhouse Gases (GHGs) are gases in the earth's atmosphere that trap heat.

Global warming potential (GWP) is an index to measure of how much infrared thermal radiation a GHG would absorb over a given time. It is expressed as a multiple of the radiation that would be absorbed by the same mass of carbon dioxide, which is taken as a reference gas.

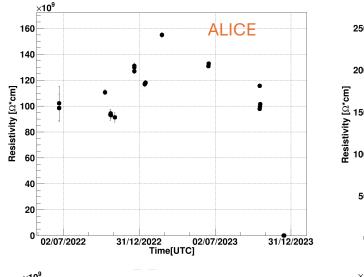
Gas	Atmospheric lifetime	GWP ₁₀₀ years
CO ₂	50-200 years	1
R-134a	14 years	1430
CF ₄	50,000 years	7390
C ₄ F ₁₀	2600 years	9200
SF ₆	3200 years	22800

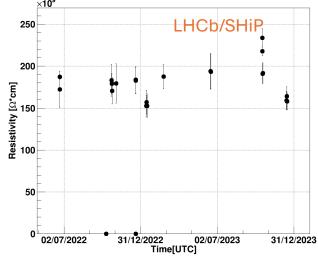
Gases used at CERN with high GWP

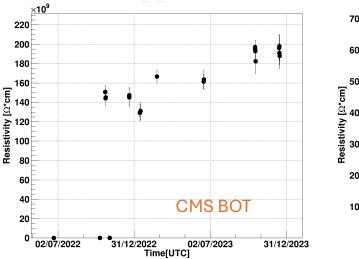
Resistivity monitoring by Ar scan

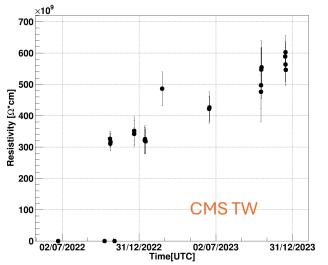

Procedure

- 1. Linear fit to the ohmic part of the I(V) curve
- 2. Starting point of the fit is decided by the fit with the minimum chi square adding one point at a time
- 3. Function used y = a + bx, b = 1/R (R = resistance of the electrodes)

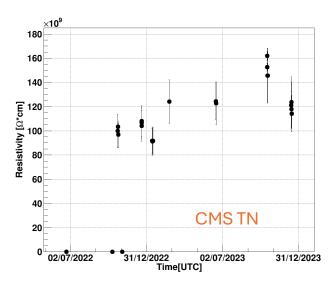

 ρ (resistivity) = R*S(surface)/2d(electrode thickness) = 1/b*S/2d


Resistivity values shown in the following are normalized to $T_0 = 20^{\circ}\text{C}$ using the following formula:


$$\rho(T) = \rho(T_0) * 4.4^{\frac{T_0 - T}{12 \circ C}}$$



Resistivity trend



- Resistivity monitoring by Ar scan (see backup slides)
- Slightly increase trend for CMS top RPCs while more constant behavior for the others
- Possible not uniform response in all detectors (under discussion, electrodes materials??)

