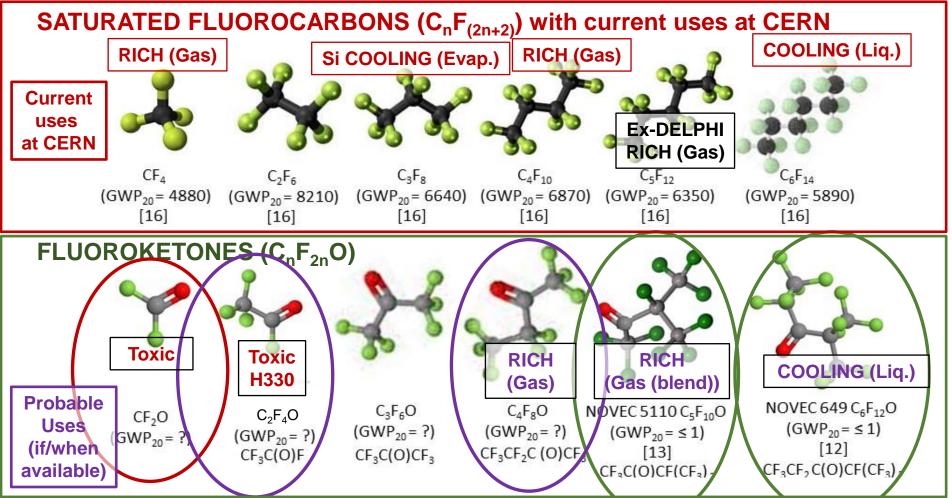


Green use of fluorocarbons in Cherenkov detectors and silicon tracker cooling systems: challenges and opportunities.

G. D. Hallewell

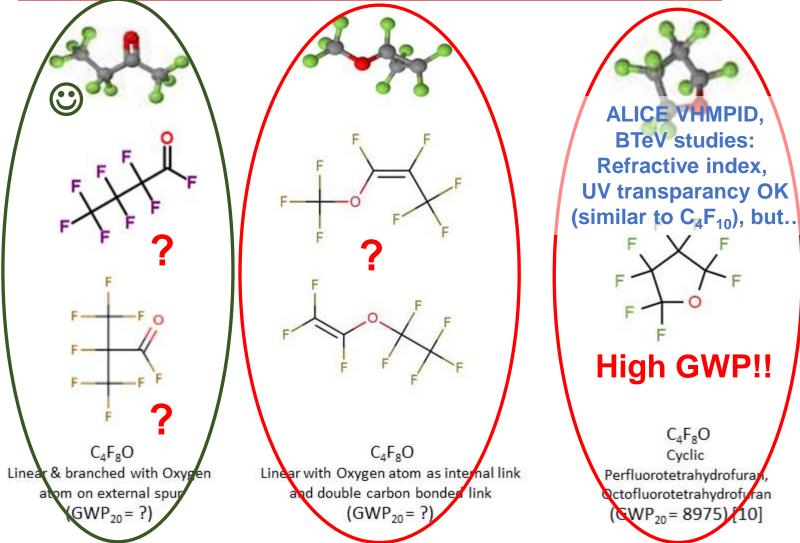
Aix Marseille Université, CNRS/IN2P3, CPPM, Marseille, France



"Green" fluorocarbons for Cherenkov detectors & silicon tracker cooling systems: challenges and opportunities

- <u>Saturated fluorocarbons (PFCs, SFCs: C_nF_(2n+2))</u> chosen for optical properties as Cherenkov radiators: C₄F₁₀ & <u>CF₄</u> in COMPASS & LHCb RICH1&2.
- Non-conductivity, non-flammability, non-toxicity & radiation resistance
 → ideal coolants
 - C₆F₁₄ used in all LHC experiments,
 - C₃F₈ evaporatively cools ATLAS silicon tracker, TOTEM;
- These fluids however have high GWPs (GWP₂₀ > 5000*CO₂);
- Fluoro-ketones (C_nF_{2n}O), while not industrialised over a wide C_nF_{2n}O range, can offer similar performance at very low, or 0 GWP;
- Radiation tolerance & thermal performance of 3M NOVEC 649 (lin- $C_6F_{12}O$) sufficiently promising to be considered by CERN to replace C_6F_{14} for cooling;
 - G. Hallewell: Green FCs for Cherenkov detectors & Si tracker cooling Sustainability session: ICHEP2024 Prague 18-24 July 2024

Molecular shapes and GWP (1)



Upper: molecular shapes of SFCs, including common gaseous Cherenkov radiators

Lower: shapes of some non-cyclic $C_nF_{2n}O$ analogues

 $(20\text{-year}\ GWPs\ noted\ where\ known-refs:\ \underline{\text{https://link.springer.com/article/10.1140/epjp/s13360-023-04703-w}})$

Molecular shapes and GWP (2)

Cyclic, non-cyclic & non-cyclic double carbon-bonded C₄F₈O isomers: refs at end.

Placement of oxygen atom can also determine flammability & toxicity

From: 2021-22 CERN environmental Report report

https://doi.org/10.25325/CERN-Environment-2023-003

	GROUP	GASES	tCO ₂ e 2021	tCO ₂ e 2022
Environment Report 2021-2022	Perfluorocarbons PFC (PFCs) (particle d	Loss around 10- etection and de	12 tonnes tector cooli	68 989 ng)
	Hydrochlorofluorocarbons (HFCs)	HFC-23 (CHF ₃) HFC-32 (CH ₂ F ₂) HFC-134a (C ₂ H ₂ F ₄) HFC-404a HFC-407c HFC-410a HFC-507	36 557	86 211
	Other F-gases	SF ₆ , WP 23000	16 838	18 355
	Hydrofluoroolefins (HFO)/HFCs	R-449 R1234 ze NOVEC 649 GWP	86	199
		CO ₂	13 771	10 419
	Total Scope 1		123 174	184 173

Adding some conclusion here, <u>in case I run out of time</u>.

"Green" fluorocarbons for Cherenkov detectors & silicon tracker cooling systems: challenges & opportunities

- Saturated fluorocarbons (SFCs: C_nF_(2n+2)) chosen for optical properties as Cherenkov radiators: C₄F₁₀ & CF₄ used in COMPASS & LHCb RICH1&2.
- Non-conductivity, non-flammability & radiation resistance → ideal coolants
 - C₆F₁₄ used in all LHC experiments,
 - C₃F₈ evaporatively cools ATLAS silicon tracker, TOTEM.
- These fluids however have high GWPs (GWP₂₀ > 5000*CO₂).
- While not industrialised over a wide C_nF_{2n}O range fluoro-ketones can offer similar performance at very low, or 0 GWP;
- Radiation tolerance & thermal performance of 3M NOVEC 649 (lin- $C_6F_{12}O$) sufficiently promising to be considered by CERN to replace C_6F_{14} for cooling;
- <u>Cherenkov detectors</u>: subject to optical testing, lin- C_4F_8O could replace C_4F_{10} while $lin-C_4F_8O$ or $lin-C_5F_{10}O$ blended with N_2 and monitored in real time by sound velocity gas analysis could replace CF_4 in RICH radiators;
- <u>SI tracker COOLING</u>: Lighter molecules (e.g. C_2F_4O , with similar thermodynamics to C_2F_6) would allow lower temperature, 0GWP operation than evaporative CO_2 in Si trackers operated at high luminosity: low order $C_nF_{2n}O$ toxicity a problem...
 - G. Hallewell: Green FCs for Cherenkov detectors & Si tracker cooling Sustainability session: ICHEP2024 Prague 18-24 July 2024

What gives NOVEC 649/1230 (lin $C_6F_{12}O$: FK-5-1-12) its low GWP?

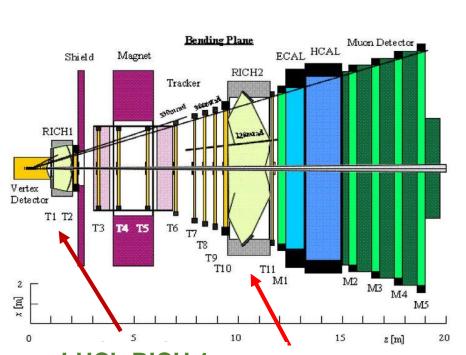
A: Structure!: a double-bonded oxygen atom on a peripheral spur of the molecule

This fluoro-ketone configuration is: $CF_3CF_2C(O)CF(CF_3)_2$

What gives NOVEC 649/1230 (lin $C_6F_{12}O$: FK-5-1-12) its low GWP?

https://www.nist.gov/system/files/documents/el/fire_research/R0301570.pdf [15]

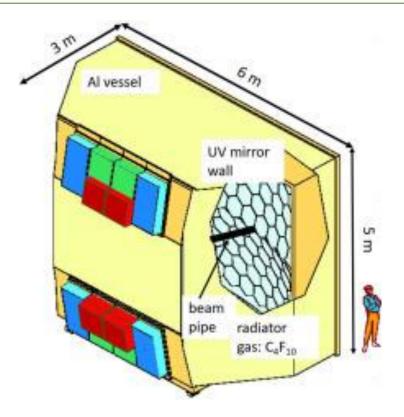
Scission by UV photons of λ ~300 nm in upper atmosphere (low P, high UV): fragments do not re-associate* into $C_nF_{(2n+2)}$ SFCs


*The Environmental Impact of CFC Replacements HFCs and HCFCs

<u>T. WALLINGTON</u> et al *Environ.Sci.Technol.*1994(28)7 320A https://doi.org/10.1021/es00056a714

The Cherenkov detector aspect

Ideally... replace SFCs with sameorder GWP₀ FKs with good UV transparency, refractivity...


LHCb detector

LHCb RICH 1 $(4m^3 lin-C_4F_8O)$ GWP eqv. CO_2 : 0 tonnes

LHCb RICH 2 (100 m³: CF₂O + ?)

No! CF₂O TOXIC ⊗

COMPASS RICH (100 m 3 lin- C $_4$ F $_8$ O) GWP eqv. CO $_2$: 0 tonnes

Refractive index & GWP 'load' in a Cherenkov Gas Radiator (vessel only, not including tankage & piping)

 C_4F_{10} (COMPASS: 100m³, LHCb RICH 1: 4m³): $GWP_{20} = 4880$, CF_4 (LHCb RICH 2: 100m³): $GWP_{20} = 6870$

Cherenkov radiator vessel volume $V(m^3)$ filled with a blend of gases of densities ρ_i (kgm^{-3}), fractional concentrations w_i & individual GWP_i (tonnes CO_2 eq.) has a GWP environmental "load" (& release potential) L given by:

$$L = \frac{V}{1000} \sum_{i} (wi.\rho_i.GWPi)$$
 (tonnes CO₂ eq.)

Corresponding radiator gas mixture refractivity given by:

$$(n-1)_{rad} = \sum_{i} (wi. (n-1)_{i})$$

Can blend small concentration ω_x of (heavier) SFC or Lin-FK vapour of high refractivity $(n-1)_x$ with ω_y of light transparent gas $(N_{2}, Ar...)$ to replicate the target refractivity $(n-1)_x$ of a lighter SFC at high concentration – for lower GWP load.

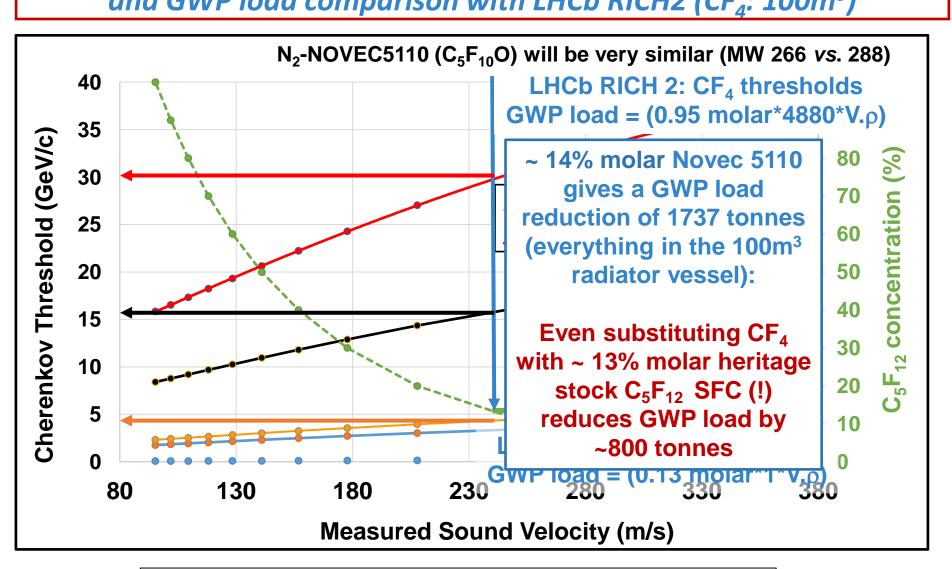
$$\omega_{x} = \frac{(n-1)_{z(target)} - (n-1)_{y}}{(n-1)_{x} - (n-1)_{y}}$$

Use real-time speed of sound to get component molar concentrations, ω_i (SoS traditionally also called "c" by acousticians to confuse things)

$$C = \sqrt{\frac{\gamma RT}{M}} \gamma_m = \frac{C_{pm}}{C_{vm}} = \frac{\sum_i w_i C p_i}{\sum_i w_i C v_i} \quad M = \sum_i w_i M_i \qquad c = \sqrt{\frac{\sum_i w_i C p_i}{\sum_i w_i C v_i} RT}$$

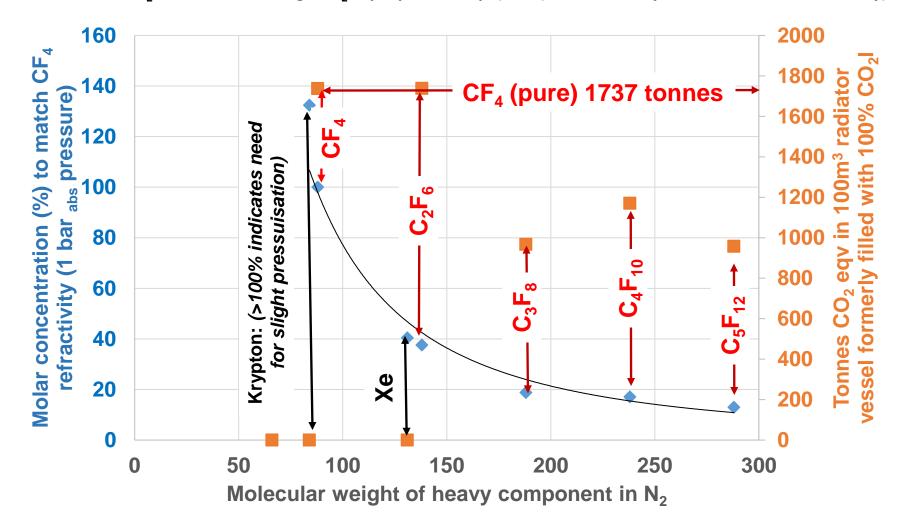
More details (ATLAS system): https://www.mdpi.com/2410-390X/5/1/6

Then use standard refractivity formula to get from calculated $\omega_{1,2}$


$$(n-1)_{rad} = \sum_{i} (wi. (n-1)_{i})$$

to refractive index of radiator gas blend in real-time, then standard relativistic expressions to get from n to Cherenkov γ thresholds for different particle species + β = 1 angle

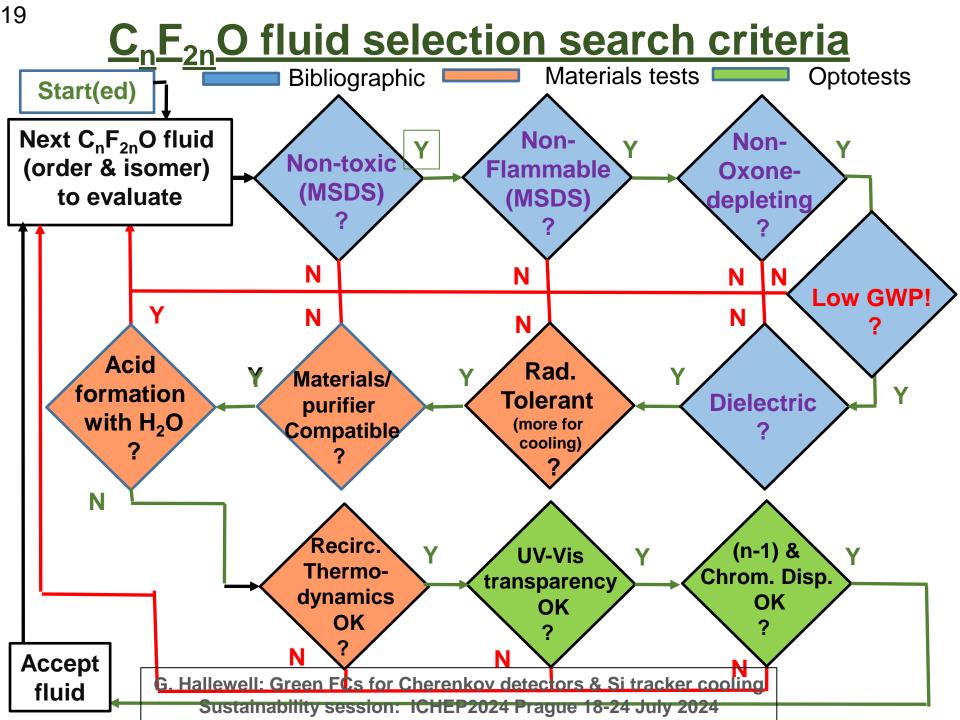
Real-time measurement of speed of sound c takes us via the relative concentrations of the components to the speed of light β and beyond!! in the radiator gas


Eyes on the prize...(focus here on LHCb RICH2 (n-1)...) $(488.10^{-6})_{CF4} = (\sim 1750.10^{-6})_{C5F100} *0.12 + (300.10^{-6})_{N2} *0.88$

Cherenkov threshold: lin- $C_5F_{10}O$ (eg: 3M NOVEC 5110)/ N_2 & (heritage) C_5F_{12}/N_2 blend and GWP load comparison with LHCb RICH2 (CF_4 : 100 m^3)

Radiator volume GWP load: 100 m³ gas radiator with different mw gases blended with nitrogen to replace CF₄

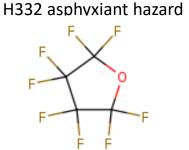
(note: blends with Ar very similar: need refractivity data for linear fluoro-ketones, probably similar to SFCs) blends with CO₂ not consdered: high CO₂ triple point temp (-56 C) → thermodynamic recirculation difficulty)



Even bigger GWP load reduction through C₄F₁₀ index matching (eg here: COMPASS RICH)

Table 1: GWP loads of various SFCs and NOVEC 5110 blended with N_2 ((n-1) = 310.10⁻⁶) to match refractivity of CF_4 and C_4F_{10} assumed radiator volume: 100 m³

Base fluid	Base fluid density (1bar,25°C) kgm ⁻³	Base fluid GWP (20-yr)	Component (n-1) (*10 ⁶) (@ nm)	% Blend with N ₂ to match (n-1) CF ₄	GWP load (t.CO ₂)	% Blend with N ₂ to match (n-1) C ₄ F ₁₀	GWP load (t.CO₂)
CF ₄ LHCb RICH2 (100m ³)	3.56 [18]	4880 [16]	488 (180-310 nm) [19]	100	1737	not applicable	n/a
CF ₂ O	-			~100	0	n/a	n/a
C ₂ F ₆	5.63 [18]	8210 [16]	793 (180-310 nm) [19]	38.1	1762	not applicable	n/a
Lin-C ₂ F ₄ O	-			-		n/a	n/a
C ₃ F ₈	7.75 [18]	6640 [16]	1180 (250 nm) [16]	21.4	1099	not applicable	n/a
Lin-C ₃ F ₆ O	-			-		n/a	n/a
C_4F_{10} LHCb RICH1 (4m³): COMPASS (100m³)	9.97 [18]	6870 [16]	1450 (250 nm) [16]	16.3	1119	100	6849
$Lin-C_4F_8O$ (Non-cyclic $C_4F_8O)^*$	9.5 (est.)	Probably < 1 (NOVEC 5110 Analogy)	1380 @ 400nm (based on 3M PFG-3480 c- C_4F_8O [7]: linear C_4F_8O not yet measured but assumed similar)	18.4	0.18	112.7* (>100% would imply necessity of operating C ₄ F ₈ O at slight overpressure)	1.07
C ₅ F ₁₂	11.63 [18] (BP 30 °C at 1 bar)	6350 [16]	1750 (180-310nm)[19] (40 °C, undiluted)	13.0	957	79.3	5857
NOVEC 5110 C₅F ₁₀ O	10.7 [13] (BP 27 °C at 1 bar)	<1 [13]	Not yet measured: probably around 1650 by analogy with C_4F_{10} and C_4F_8O ratio	13.9	0.149	85.2	0.91


G. Hallewell: DRD4 WG 2 Low GWP FC radiator gases: June 19 2024

Some molecular shapes to study (or eliminate) for UVT, GWP, radiation stability & materials compatibility: example: C₄F₈O isomers,

Octafluorotetrahydrofuran

CAS: 773-14-8

BTeV, ALICE VHMPID evaluated; good properties but high GWP

Pentafluoroethyl trifluorovinyl ether

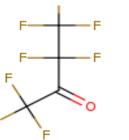
CAS: 10493-43-3 Flammable,

H332 Inhalation toxicity Cat 4

Octafluoro-3-methoxyprop-1-ene

CAS: 67641-44-5

H332 Inhalation toxicity Cat. 4


Source: https://www.synguestlabs.com

Octafluoro-2-butanone

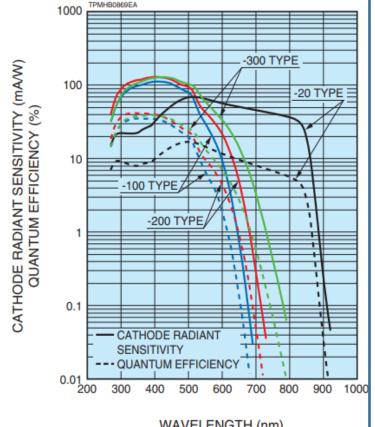
CAS: 337-20-2

Most promising candidate? analogy with NOVEC 5110,

649 structures...

2,2,3,3,4,4,4-Heptafluorobutanoyl Fluoride CAS: 335-42-2 H331 Inhalation toxicity Cat. 3

Heptafluoroisobutyryl Fluoride CAS: 677-84-9


H331 Inhalation toxicity Cat. 3

UV transparency, refractivity, cmhemical stability & compatibility studies needed for different $C_n F_{2n} O$ molecular shapes.

RICH detector community very competent & equipped for detailed UVT & (n-1)

Figure 1: Typical spectral response

WAVELENGTH (nm)

Most probable PC spectral range
in new build gas RICH detectors

T.V. Acconcia et al. / Nuclear Instruments and Methods in Physics Research A 767 (2014) 50-60 1.1 C₄F₈O Transparency (180 cm radiator length, I atm) 0.9 0.8 0.7 0.6 0.5 Oct. 27, 18:00 : O₂= 3 ppm, H₂O= 10.5 ppm Oct. 27, 18:40 : O₂= 3 ppm, H₂O= 10.4 ppm 0.4 0.3 0.2 0.1 λ (nm) 150 155 160 165 170 175 180 185 190 195 200 205 210 Fig. 24. Three transparency measurements of the radiator gas during the same day.

ALICE VHMPID: transparancy measurements in c-C₄F₈O
Octafluorotetrahydrofuran

CAS: 773-14-8

Synquest Inc. FL, USA

On the turning away...

The uncertain ECHA (European Chemicals Agency) route to fluorocarbon (PFC, PFAS...) prohibition (Other people here will talk about this...Path paved with impracticalities?)

[51] ECHA/NR/23/04;

https://echa.europa.eu/-/echa-publishes-pfas-restriction-proposal]

[52] ECHA Candidate List of substances of very high concern for Authorisation;

https://echa.europa.eu/candidate-list-table

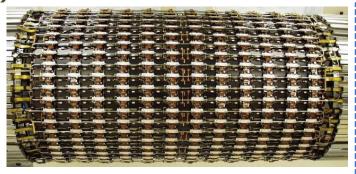
[53] Annex to the Annex XV restriction report proposal for restriction: Per- & polyfluoroalkyl substances (PFASs); ECHA; 22/03/2023

https://echa.europa.eu/documents/10162/d2f7fce1-b089-c4fd-1101-2601f53a07d1

[54] Per- and polyfluoroalkyl substances (PFAS); ECHA

https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas

Au revoir 3M... need to clarify manufacturers' attitudes (Dehon Co. (Fr), Synquest (USA), F2 (UK), various companies in China)... on future lin-fluoroketone ($C_nF_{2n}O$) production Electronics industry is the driver: we just ride the coat-tails!


The Silicon tracker cooling aspect

See also

https://link.springer.com/article/10.1140/epjp/s13 360-023-04703-w

Two distinct types of detector cooling geometry at HL-LHC:

(1) Tube and block 'DNA'

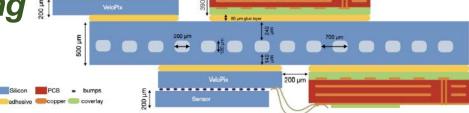
ATLAS barrel SCT (present)

Thermal Figure of Merit (TFM):

Expressed in terms of temperature difference between Si modules & coolant at given power density (units: °C cm² W⁻¹)

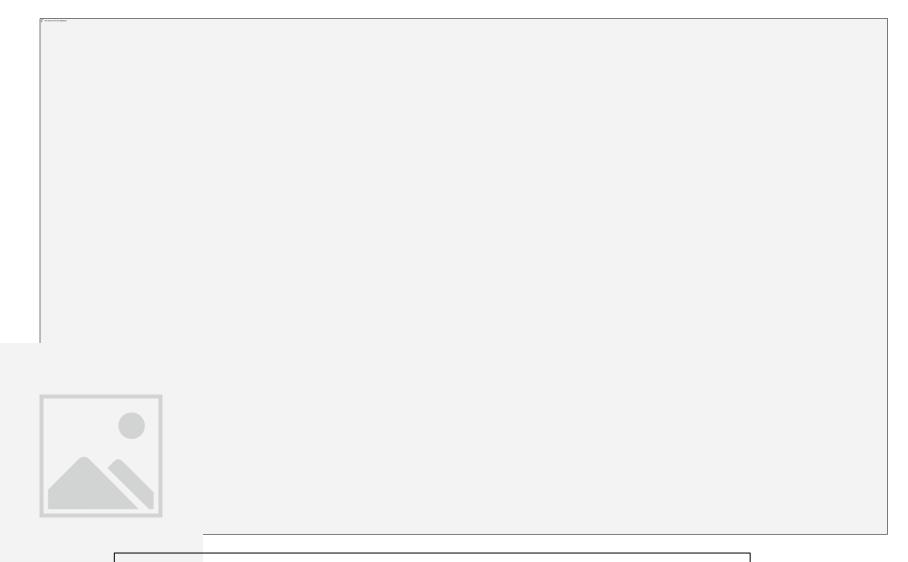
TFM = $((T_{(Si module)} - T_{(Coolant)}) / (Si module power/cm²)).$

Lower numeric value → better thermal performance.


TFMs < 4 typical in microchannel devices,

~ 20+ in some tube & block geometries.

Disadvantages: long(er) heat conduction path (more interfaces) Si > cold(er) coolant: lower Thermal figures of merit NEED COLDER COOLANT!


(2) Micro-channel cooling

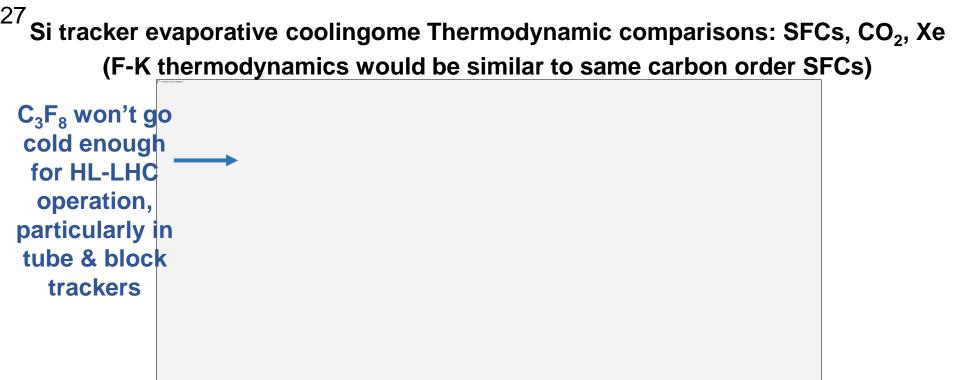
LHCb VELO upgrade

Advantages: shortest heat conduction path to coolant: coolant can be warmer: Disadvantages: fraglity issues: channels etched in silicon and cover plate attached

Micro-channel cooling: the LHCb VELO upgrade Recent mastery of evaporative CO₂ cooling in microchannels

CO₂ Evaportive cooling problems:

High triple point temperature of -56 °C


limits the lowest temperature attainable in the tubes of a tube & block cooling system: CO₂ cooling now admitted to be insufficient for protection against radiation damage and protection against leakage current-generated thermal runaway over the whole HL-LHC envelope (2029-41):

see: L. Contiero et al; Cold Krypton system for the Phase III Upgrade of the LHC, Forum on Tracking Detector Mechanics 2023, Tuebingen Germany May 31-June 2 2023

ATLAS plans to change its inner pixel detector half way through...

CO₂ cooling already known to be inefficient at coolant temperatures below -40 °C:

A very complicated trans-critical krypton evaporative cycle has been proposed

https://link.springer.com/article/10.1140/epjp/s13360-023-04703-w

 C_2F_4O would have been the ideal fluid: much cheaper than Xe, but toxic... blend C_2F_6 with C_3F_6O ?? (C_2F_6 / C_3F_8 zeotropic blends already demonstrated...)

R. Bates et al; 2015 JINST 10 P03027

On the turning away...

The uncertain ECHA (European Chemicals Agency) route to fluorocarbon (PFC, PFAS...) prohibition (Other people here will talk about this...Path paved with impracticalities?)

[51] ECHA/NR/23/04;

https://echa.europa.eu/-/echa-publishes-pfas-restriction-proposal]

[52] ECHA Candidate List of substances of very high concern for Authorisation;

https://echa.europa.eu/candidate-list-table

[53] Annex to the Annex XV restriction report proposal for restriction: Per- & polyfluoroalkyl substances (PFASs); ECHA; 22/03/2023

https://echa.europa.eu/documents/10162/d2f7fce1-b089-c4fd-1101-2601f53a07d1

[54] Per- and polyfluoroalkyl substances (PFAS); ECHA

https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas

Au revoir 3M... need to clarify manufacturers' attitudes (Dehon Co. (Fr), Synquest (USA), F2 (UK), various companies in China)... on future lin-fluoroketone ($C_nF_{2n}O$) production Electronics industry is the driver: we just ride the coat-tails!

Conclusion

(See the beginning as I didn't think I'd get this far...)

Anyway... thanks for watching and listening:

(some references and back-up material follow for those interested in this subject)

Also see: https://link.springer.com/article/10.1140/epjp/s13360-023-04703-w

Well, if you insist...

- Saturated fluorocarbons (SFCs: $C_nF_{(2n+2)}$) are chosen for their optical properties as Cherenkov radiators, with C_4F_{10} and CF_4 used in COMPASS & LHCb RICH1&2.
- Non-conductivity, non-flammability & radiation resistance → ideal coolants
 with C₆F₁₄ used in all LHC experiments, while C₃F₈ evaporatively cools the ATLAS
 silicon tracker and TOTEM.
- These fluids however have high GWPs (GWP₂₀ > 5000*CO₂).
- While not industrialised over a wide C_nF_{2n}O range fluoro-ketones can offer similar performance at very low, or 0 GWP;
- Radiation tolerance & thermal performance of 3M NOVEC 649 (lin- $C_6F_{12}O$) sufficiently promising to be considered by CERN to replace C_6F_{14} for cooling;
- Subject to optical testing, $lin-C_4F_8O$ could replace C_4F_{10} while $lin-C_4F_8O$ or $lin-C_5F_{10}O$ blended with N_2 and monitored in real time by sound velocity gas analysis could replace CF_4 in RICH detectors;
- Lighter molecules (e.g. C_2F_4O , with similar thermodynamics to C_2F_6) would allow lower temperature, 0GWP operation than evaporative CO_2 in Si trackers operated at high luminosity, but low order $C_nF_{2n}O$ toxicity a problem...

References and back-up material

Approaches to low-GWP fluorocarbon RICH radiator gases

See also:

- (1) https://link.springer.com/article/10.1140/epjp/s13360-023-04703-w (paper: EuroPhysics J. Plus, Dec 2023)
- (2) https://indico.cern.ch/event/1263731/contributions/5398511/attachments/2648319/4584649
 /G_Hallewell_DRD4%20Rad%20Gas%20GWP%20with%20annexes%20May%2016%202023.pdf
- (3) https://indico.cern.ch/event/1410802/ (DRD4 WG2 meeting 17 May 2024)
- (4) https://indico.cern.ch/event/1420840/ (DRD4 WP_3.1 meeting 28 May 2024)

Cherenkov radiator and related general references (1 of 2) from

https://link.springer.com/article/10.1140/epjp/s13360-023-04703-w

- [1] CERN Environment Report 2017–2018 https://doi.org/10.25325/CERN-Environment-2020-001
- [2] B. Mandelli; Eco-gas mixtures and mitigation procedures for Green-house Gases (GHGs); ECFA Detector R&D Road-map Symposium: T.F. 1 Gaseous Detectors, 29/4/2021

https://indico.cern.ch/event/999799/contributions/4204191/attachments/2236047/3789965/BMandelli ECFA.pdf,

- [3] B. Mandelli; R&D for the optimization of the use of greenhouse gases in particle detector systems; Mini workshop on gas transport parameters for present and future generation of experiments: CERN April 22, 2021 https://indico.cern.ch/event/1022051/contributions/4325947/
- [4] G. Rigoletti; Studies to reduce greenhouse gas emissions from detectors at the LHC; EP-DT Seminar May 4, 2022.pdf (cern.ch)
- [5] S. Dalla Torre et al; Long term experience with C₄F₁₀ in COMPASS RICH-1; Presentation 11th Intl. Workshop on Ring Imaging Cherenkov detectors, Edinburgh, Scotland, Sept 12-16 2022.

https://indico.cern.ch/event/1094055/contributions/4932286/attachments/2508724/4311387/RICH2022 C4F10 dallatorre.pdf

[6] 3M PFG-3480: c-octofluorotetrahydrofuran (C_4F_8O). **Note**: fluid out of production: product reference now used for a non-fluidic product. For historic product data sheet mentioning its high GWP see (for example):

http://static6.arrow.com/aropdfconversion/a7116f41dfdd5b79d2eb7b40afd687f8af23d8ef/mediawebserver(563).pdf

- [7] M. Artuso et al; Nucl. Instr & Meth. A Volume 558, (2006), 373-387
- [8] **Product #**2H07-2-08 **Synonyms**: 2,2,3,3,4,4,5,5-octafluorotetrahydrofuran, Perfluorotetrahydrofuran; **CAS No**: 773-14-8, **MDL No**.

MFCD00465561: SynQuest Labs Inc., 13201 Rachael Boulevard, Alachua, FL 32615, USA

https://www.synguestlabs.com/Home/ProductDetail?SearchText=Octafluorotetrahydrofuran

- [9] T. Acconcia et al; Nucl. Instr & Meth A 767 (2014) 50-60
- [10] M. Vollmer et al; Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, c-C4F8O) in the atmosphere; Atmos. Chem. Phys., 19, 3481–3492, 2019
- [11] 3M Novec® range of fluorinated fluids; https://www.3m.com/3M/en_US/p/c/b/novec/?Ntt=novec

https://multimedia.3m.com/mws/media/124688O/3m-novec-1230-fire-protection-fluid.pdf

- [13] 3M Novec 5110 fluid (C₅F₁₀O); https://multimedia.3m.com/mws/media/1132123O/3m-novec-5110-insulating-gas.pdf
- [14] CERN report EN-CV 22/12/2017, EDMS 1751219 2017-334 rev 1.0: Technical Note NOVEC Fluids Qualification Report: Report on the study executed for the qualification of the NOVEC Fluid for Detector Cooling applications.
- [15] J. Owens, <u>Understanding the stability and environmental characteristics of a sustainable Halon alternative.</u>
 3M Performance Materials 3M Center, St. Paul, MN 55144

Cherenkov radiator and related general references (2 of 2) from

https://link.springer.com/article/10.1140/epjp/s13360-023-04703-w

[16] CERN Mini-workshop on gas transport parameters for present and future generation of experiments 20/04/2021;

S. Easo; LHCb-RICH detectors and their gas radiators

https://indico.cern.ch/event/1022051/contributions/4333562/attachments/2231064/3780374/LHCb-RICH-Current-GasRadiators-April-2021.pdf,

Options for alternate radiators in LHCb-RICH system (including calculations by O. Ullaland); S. Easo,

https://indico.cern.ch/event/1022051/contributions/4319538/attachments/2231436/3781060/LHCb-RICH-Future-Radiators.pdf

[17] S.Easo; Nucl.Inst.& Meth. A 876 (2017) 168-173

[18] E. Lemmon, M. Huber, & M. McLinden; REFPROP Standard reference database 23, version 9.0 (2010)

U.S. National Institute of Standards & Technology.

[19] E. Nappi and J. Seguinot Rivista del Nuovo Cimento Vol. 28, N. 8-9 2005 DOI 10.1393/ncr/i2006-10004-6

[20] K. Abe et al.; IEEE Trans. Nucl. Sci. 45 (1998) 648 SLAC-PUB-7705 DOI: 10.1109/23.6826

[21] G. Hallewell et al; Nucl. Instr. & Meth A264 (1988) 219-234

[22] G. Hallewell; Nucl. Instr & Meth A 876, (2017) 50-53

[23] G. Hallewell et al; MDPI Instruments (2021) 5(1), 6;

[24] P. Stassi et al; Ultrasonic Gas mixture analysis system in the Forward RICH of DELPHI,

DELPHI Internal Note 95-124 RICH73, 25 July 1995

[25] M.Sannino; Nucl. Instr. and Methods in Physics Research A 595 (2008) 208–211

[26] C. D'Ambrosio et al; Monitoring, Alignment and Control of the RICH Detectors;

LHCb-Memo-2000-80 RICH 6 September 2000.

[27] P. Fauland, PhD thesis; (COMPASS experiment) University of Bielefeld March 2004.

[28] Now marketed as SensComp model 600 transducer, http://www.senscomp.com/ultrasonic-sensors/

[29] T. Blake et al; Nucl. Instr. Meth A791 (2015) 27-31

[30] A. Papanestis; Nucl. Instr. Meth. A766 (2014) 14–18

[31] R. Calabrese et al; 2022 JINST 17 P07013

[32] J. Vavra (SLAC National Laboratory); private communication.

Silicon tracker cooling and related general references FROM

https://link.springer.com/article/10.1140/epjp/s13360-023-04703-w

- [33] P. Tropea; The CMS tracker fluorocarbon cooling system,
 - Engineering Forum: experiences from cooling systems for LHC detectors Oct 30 2008
- [34] G. Aglieri Rinella et al, <u>2019 JINST 14 P07010</u>
- [35] G. Anelli et al; 2008 JINST 3 S08007
- [36] D. Attree et al, 2008 JINST 3 P07003
- [37] W. Adam et al; 2021JINST16P02027 CMS Technical Design Report; Pixel Detector Upgrade CMS-TDR-011, CERN-LHCC-2012-016 07/09/2012
- [38] ATLAS Insertable B-Layer Technical Design Report; CERN-LHCC-2010-013 ATLAS TDR 19 15/09/2010
- [39] O. de Aguiar Francisco et al; Nucl. Instr. Meth A. 1039 (2022) 166874 https://www.sciencedirect.com/science/article/pii/S0168900222003394
- [40] Fluoroketone C₂F₅C(O)CF(CF₃)₂ as a Heat Transfer Fluid for Passive and Pumped 2-Phase Applications;
 - P. Tuma, 3M Co., 3M Center, 236-2B-01St. Paul, MN 55144, USA, Proc. 2008 IEEE 24th IEEE Semiconductor Thermal
 - Measurement and Management Symposium, San Jose CA, March 16-20 **DOI**: 10.1109/STHERM.2008.4509386
 - also accessible via: https://twiki.cern.ch/twiki/pub/LHCb/SciFiDemoCooling/F.Tuma_c6K_as....pdf
- [41] L. Gruber et al; Nucl. Instr. & Meth. 958 (2020) 162025 https://www.sciencedirect.com/science/article/abs/pii/S016890021930422X?via%3Dihub
- [42] "Building the future of LHCb"; C. Frei, S. Gambetta, B. Leverington; CERN Courier, September 2021 (2 September 2021) https://cerncourier.com/a/building-the-future-of-lhcb
- [43] M. Battistin et al; Int. J. Chemical Reactor Engineering 2015; 13(4): 511-521
- [44] R. Bates et al; 2015 JINST 10 P03027
- [45] https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
- [46] L. Contiero et al; Cold Krypton system for the Phase III Upgrade of the LHC, Forum on Tracking Detector Mechanics 2023, Tuebingen Germany May 31-June 2 2023
- [47] L. Contiero et al; Krypton, applied as refrigerant for cooling of silicon detector trackers;
 - GL 2022: 15th IIR-Gustav Lorentzen Conference on Natural Refrigerants, Trondheim, Norway, June 13-15 2023
 - [48] D. Alvarez et al: Thermo-Mechanical Performance of the Local Supports for the ATLAS ITk Pixel Outer Barrel: Experimental and FEA Studies; Forum on Tracking Detector Mechanics 2023, Tuebingen Germany May 31-June 2 2023
- [49] B. Verlaat; CO₂ cooling experiences in the LHCb Velo Thermal Control System Engineering Forum: experiences from cooling systems for LHC detectors Oct 30 2008
- [50] R. Bates et al; 2013 JINST 8 P02006
- [51] ECHA/NR/23/04; https://echa.europa.eu/-/echa-publishes-pfas-restriction-proposal]
- [52] ECHA Candidate List of substances of very high concern for Authorisation; https://echa.europa.eu/candidate-list-table
- [53] Annex to the Annex XV restriction report proposal for restriction: Per- & polyfluoroalkyl substances (PFASs);
 - ECHA; 22/03/2023 https://echa.europa.eu/documents/10162/d2f7fce1-b089-c4fd-1101-2601f53a07d1
- [54] Per- and polyfluoroalkyl substances (PFAS); ECHA https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas
 - G. Hallewell: Green FCs for Cherenkov detectors & Si tracker cooling Sustainability session: ICHEP2024 Prague 18-24 July 2024

(5.7) SWOT analysis of cooling fluids HL-LHC

Strengths CO₂

Non-flammable, nontoxic, electrical insulator, non-ozone-depleting, radiation resistant, GWP=1

Weaknesses CO₂

High pressure circulation (60 bar) at ambient temp before cooldown to operating temp High triple point (-56°C)

Strengths C₂F₆ Non-flammable, nontoxic, electrical insulator, non-ozone-depleting, radiation resistant

Weaknesses C₂F₆ **Very high GWP** (around $6000 \times CO_2$)

Threats CO₂

High triple point may make Si tracker operation problematic: less thermal 'headroom' after heavy irradiaton ('thermal runaway' phenomenon)

Opportunities CO₂

Extensive R&D program at CERN **Evaporative coolant of** choice for ATLAS, CMS for start of HL-LHC program

Threats C₂F₆ Production will be phased out unless a strong motivation from

semiconductor manufacture industry

Opportunities C₂F₆

Proved to decrease the

operating temp of an

ATLAS SCT thermal model

in blend with 75% C₃F₈

Strengths xenon

Non-flammable, nontoxic, electrical insulator, non-ozone-depleting, radiation resistant, GWP=0

Weaknesses xenon

High pressure circulation (50 bar) at ambient temp before cooldown to operating temp (amost transcritical) **Extremely expensive**

Strengths C_nF_{2n}O

Non-flammable, non-toxic, electrical insulator, nonozone-depleting, radiation resistant, GWP=0

Weaknesses $C_nF_{2n}O$

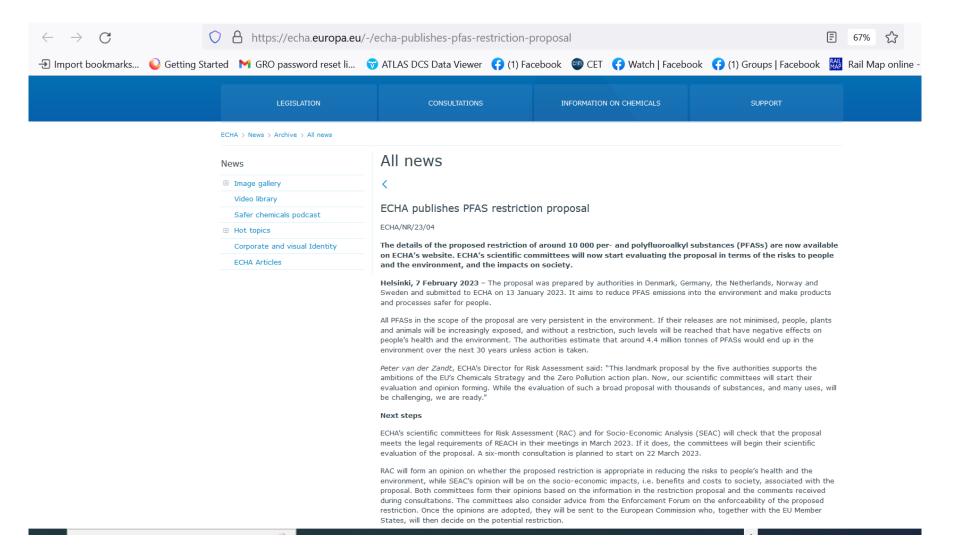
Threats xenon

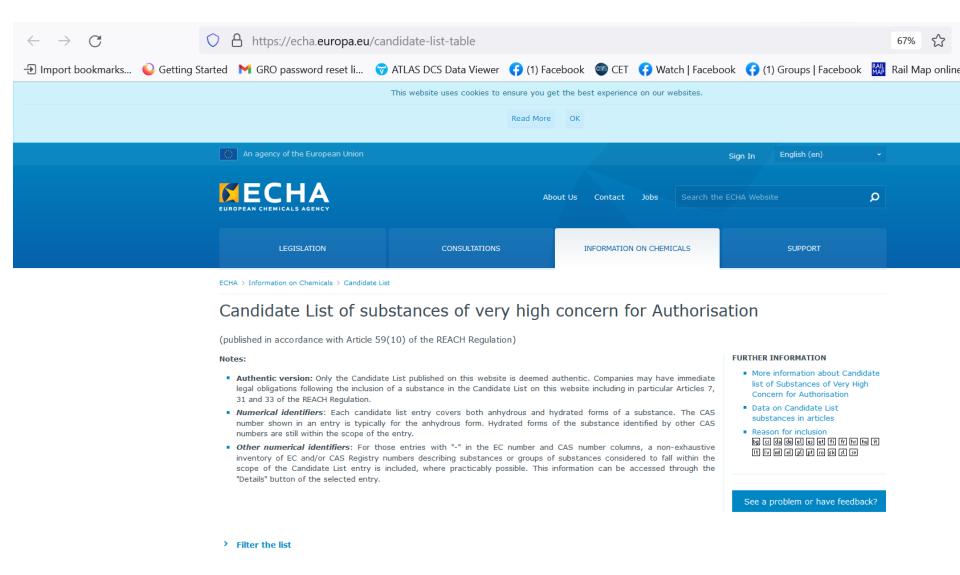
Very difficult future procurement (war in Ukraine) (10⁻⁸ atmospheric content.)

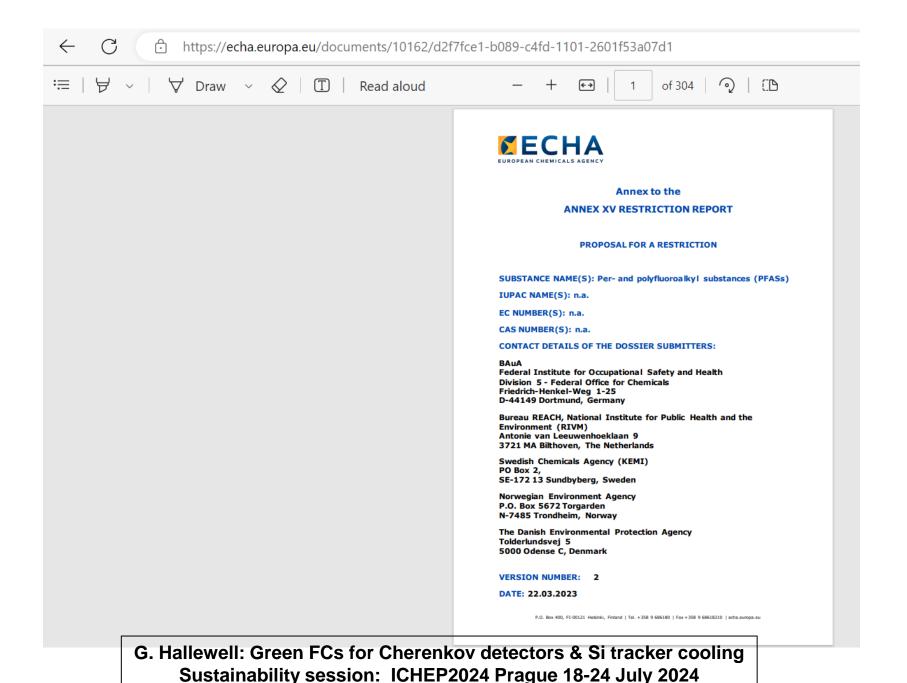
Opportunities xenon

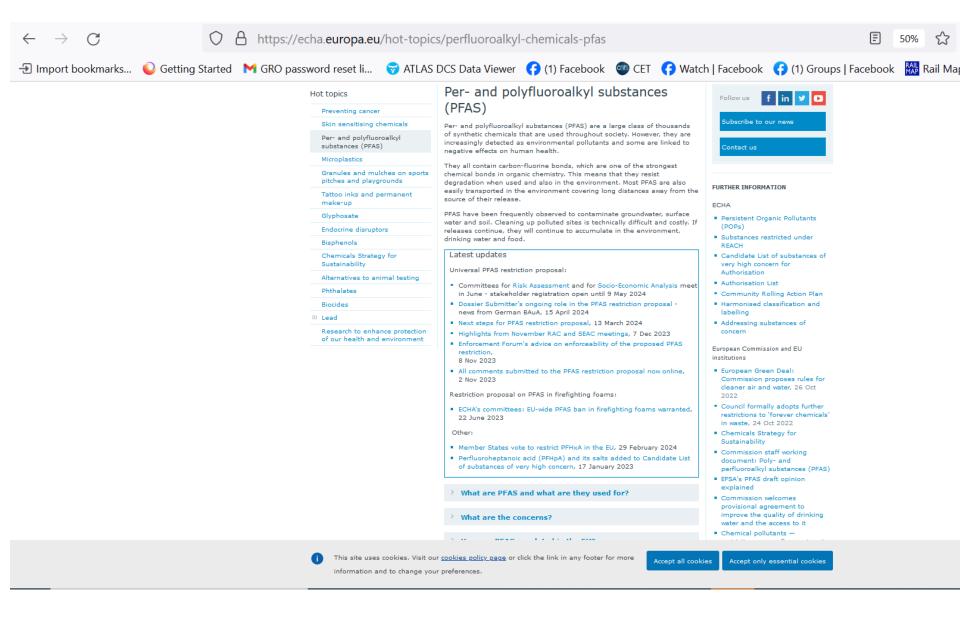
Could find expertise In particle physics community for fabrication of circulators: already used

Threats C_nF_{2n}O


Large scale industrial production may depend on the phasing-out of SFCs, needs of semiconductor manufacture industry: **Material compatibility** needs further study.


Opportunities


 $C_nF_{2n}O$ **Expertise in particle** physics community for 3M NOVEC 649 (C₆F₁₂O)


G. Hallewell: i Grann Factor of the control of the Sustainability session: ICHEP2024 Prague 18-24 July 2024

The uncertain ECHA path to prohibition (a path paved with impracticalities?)

