universität freiburg

Know Your Footprint! - A yHEP Initiative

Naman Kumar Bhalla University of Freiburg

ICHEP 2024, Prague

Friday, 19th July 2024

universitätfreiburg yHEP

- First publication on the relation between atmospheric CO_2 and ground temperature \triangleright S. Arrhenius, 1896
 - Increase in CO₂ levels by factor of 2 \rightarrow temperature increase of $\approx 6^{\circ}C$
 - Surprising accuracy already 128 year ago
 - Confirmed and refined since then in a multitude of studies \rightarrow e.g. \bigcirc Nobel Prize 2021

đe.		Carbor	nie Acid	=0.67.		Ca	irbon	ic Ac	id=1	·5.	C	arbon	ic Ac	id=2	•0.	Cı	ırbon	ic Ac	id = 2	•5.	Ca	rbon	ic Ac	id=3	•0.
Latitude.	Dec Feb.	Maroh- May.	June- Aug.	Sept Nov.	Mean of the year.	Dec Feb.	March- May.	June- Aug.	Sept Nov.	Mean of the year.	Dec Feb.	March May.	June- Aug.	Sept Nov.	Mean of the year.	Dec Feb.	March- May.	June- Aug.	Sept Nov.	Mean of the year.	Dec Feb.	March- May.	June- Aug.	Sept Nov.	Mean of the year.
70	-2.9	-3.0	-3.4	-3.1	-3.1	3.3	3.4	3.8	3.6	3 ·52	6 .0	6·1	6.0	6.1	6.05	7.9	8.0	7.9	8.0	7.95	91	9.3	9.4	9.4	9.3
d ⁶⁰	3-0	-3.2	-3·4	-3.3	-3.22	3.4	3.7	3.6	3.8	3.62	$6^{.}1$	6.1	5.8	6·1	6.02	8·0	8·0	7 ·6	7.9	7.87	9.3	9.5	8.9	9.5	9.3
edo 50 1 3 40	3 ·2	-3.3	-3.3	-3.4	-3.3	3.7	3.8	3.4	3.7	3 ·65	$6 \cdot 1$	6.1	5.5	6·0	5.92	8∙0	7.9	7.0	7 ·9	7.7	9 ·5	9 ∙4	8.6	9.2	9.17
30	-3.4	-3.4	- 3.2	-3.3	-3.32	3.7	3.6	3.3	3.2	3 ∙52	6·0	5.8	5 •4	5.6	5.2	7 ·9	7.6	6.9	7.3	7 ·42	9.3	9.0	8·2	8.8	8.82

TABLE VII. — Variation of Temperature caused by a given Variation of Carbonic Acid.

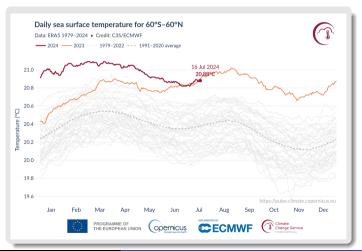

Excerpt from the Paris Agreement 2015

Holding the increase in the global average temperature to well below (a) 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels, recognizing that this would significantly reduce the risks and impacts of climate change;

https://treaties.un.org/doc/Treaties/2016/02/20160215%2006-03%20PM/Ch_XXVII-7-d.pdf

 \blacktriangleright Temperature targets set to 1.5°C (2.0°C) above pre-industrial levels (1850–1900) \Rightarrow Translates to global carbon budget^{*} of 400 GtCO₂ (1150 GtCO₂)

Naively assuming equal yearly emissions from 2020–2050 for a static population of 8 billion people:



*Carbon budget defined from the beginning of 2020 until global carbon neutrality is achieved

Trends in Ground Temperature

> Data from Copernicus Satellite ightarrow daily sea surface temperature since 1979

• Strongest anomaly observed in January 2024 \Rightarrow March 2024 hottest month

➤ Comparing last 12 months with 1850–1900 average ⇒ Global average 1.64°C higher

universität freiburg

Already reached and surpassing the ideal target of $1.5^{\circ}C$ set by Paris climate agreement 2015!

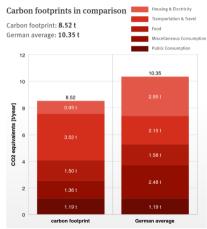
https://climate.copernicus.eu/ surface-air-temperature-june-2024

Naman Kumar Bhalla

yHEP

Relevance for High Energy Physics

In order to mitigate climate change, ALL areas of society need to contribute towards reducing emissions \Rightarrow This includes HEP!


- ► HEP has significant CO₂ emissions ⇒ Seen in recent environmental reports
- ▶ But how large per-researcher? ⇒ Know your footprint!
 - Estimate professional CO₂ footprint per researcher
 - \Rightarrow Allows comparison with private and target footprints
 - \Rightarrow Strong focus on the German scenario
 - Identify dominant sources of emissions
 - Devise strategies to address biggest sources first

Steps to solve a problem: Acknowledge ightarrow

Know Your Footprint Calculator

- Know your footprint (Kyf) calculator \rightarrow tool to estimate carbon emissions for researchers
 - Private emissions in Germany: ▶ Carbon Calculator by German Federal Environment Ministry (UBA)*
 - Professional emissions in HEP and related fields \rightarrow split into 4 categories:
 - $\Rightarrow \mathsf{Experiment}$
 - \Rightarrow Institute
 - $\Rightarrow \mathsf{Computing}$
 - \Rightarrow Travel
 - Each category configurable for an individual, i.e. for your individual research situation
 - Investigate the impact of each category
- Know your footprint calculator now live: Kyf calculator
- ► Paper discussing the basis of Kyf calculator available online on arXiv: ► arXiv:2403.03308

^{*}Permission duly granted by UBA

Possible choices offered:

- Large LHC experiment
- Small LHC experiment
- Small HEP experiment *
- Astrophysics experiment \rightarrow ESO annual report

Benchmark
ExperimentFootprint
[tCO2e]Large LHC11.91Small LHC8.76Small HEP16.68 (1.40)Astrophysics0.88

- Estimate annual per-researcher footprint:
 - (Total annual experiment footrint)/(Total experiment members)
 - Experiment member \rightarrow collaboration members or users (and operators) as per applicability

CERN environmental report(s)

 \rightarrow DESY electricity consumption

and LHCb technical design report

- Do not consider indirect benefits to society \rightarrow too vague and diffuses responsibility
- We researchers designing, building and operating detectors, and analysing data must take responsibility

^{*}Choice between green (100% photovoltaic) and conventional (German mix 2023) electricity

•

•

Possible choices offered:

- Research centre \rightarrow CERN environmental report(s)
- University $^* \rightarrow$ University of Freiburg environmental report (Cross check with Leibniz University Hannover)

	Estimate	annual	per-researcher	footprint:	
--	----------	--------	----------------	------------	--

- (Total annual institute footrint)/(Effective number of institute members)
- One year outside COVID-19 pandemic considered representative
 - \Rightarrow 2019 for University of Freiburg, 2022 for CERN
- University of Freiburg preferred over Leibniz University Hannover as default university footprint:
 - ⇒ Procurement information omitted by Leibniz University Hannover
 - \Rightarrow Decent agreement in overlapping categories

Benchmark	Footprint
Institute	$[tCO_2e]$
Research Centre	16.65
University	1.54(1.00)

^{*}Choice between green (100% photovoltaic) and conventional (German mix 2023) electricity

Computing

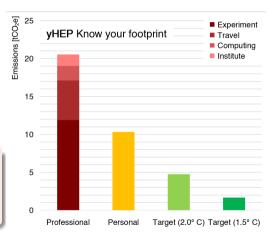
- ► Focus on high-performance computing (HPC)
 - Specify researcher's individual computing workload in core hours
 - Distinguish between CPU and GPU \rightarrow based on computational task
 - \Rightarrow Several possibilities to tune configuration
 - \Rightarrow Assume optimal core utilisation
- Potential to add footprint for large external data storage resources
- Personal computers, small institute clusters, etc.
 - \Rightarrow Assumed to be covered by personal or institute electricity and procurement
- Benchmark scenarios provided for user-friendliness

Footprint = $f_{\text{PUE}} \cdot f_{\text{overb}} \cdot n_{\text{WPC}} \cdot f_{\text{conv}}$ $n_{\text{WPC}} = p_{\text{CPU-core}} \cdot l_{\text{core-h}} \cdot c_{\text{PU}} + p_{\text{CPU}} \cdot l_{\text{h}} \cdot c_{\text{PU}}$ $p_{CPULcore} = 7.25 \,\mathrm{W}, \quad p_{CPU} = 250 \,\mathrm{W}$ $f_{\text{conv}} = 416 \,\text{gCO}_2 \text{e/kWh}$ (35 gCO₂e/kWh)

Benchmark Scenario	Usage per month	$\begin{array}{c} \textbf{Footprint}^{*} \\ [\mathrm{tCO}_2\mathrm{e}] \end{array}$
Low	$4000~{\rm CPU}$ core-h	0.25
Medium	30000 CPU core-h	1.91
High	2500 GPU h	5.48
Very high	8000 GPU h	17.52

*Here using conventional (German mix 2023) electricity

- Only considering business travel
 - \Rightarrow Private travel included in private footprint
- International research environment
 - \Rightarrow Travel important for personal connections
 - Most notably missed during COVID-19 pandemic
- ▶ But travel leads to CO₂ emissions ⇒ Need to reconsider which trips are essential
 - Avoid air travel if possible
 - More flexibility in business trips (combination, etc.)
- ▶ Possibility for detailed calculations for business trips in Kyf calculator
- Alternatively, also possible to configure with benchmark trips


Benchmark Trip	Footprint $[tCO_2e]$
Train within Europe (1 week)	0.111
Flight within Europe (1 week)	0.711
Transcontinental flight (2 weeks)	4.267

yHEP

Doctoral researcher as a benchmark case:

- Working on a large LHC experiment
- Employed by a university (conventional electricity)
- Medium computing level (conventional electricity)
- Annual travel:
 - \Rightarrow Two 1-week trips by train in Germany
 - \Rightarrow One 1-week flight travel in Europe
 - \Rightarrow One 2-week transcontinental travel
- Professional footprint double of private footprint
- Both far above the targets set in Paris agreement
- ► HEP researchers urgently need to address this ⇒ Become part of the solution to the climate crisis!

Climate crisis progressing and intensifying each year

- Relation between atmospheric CO_2 and ground temperature known since ≈ 130 years
- However, targeted action still missing today!

▶ HEP and related fields contribute to global emissions

- Estimate per-researcher emissions \rightarrow Know your footprint
- Four categories: Experiment, Institute, Computing, Travel
- Evaluation of benchmark researcher:
 - \Rightarrow Total footprint $\approx 6 \ (\approx 18)$ times larger than what is needed for the 2.0°C (1.5°C) target

 \Rightarrow Know your footprint to know where to start!

 \Rightarrow Every gram of CO₂ not emitted counts!

Summary

Climate crisis progressing and intensifying each year

- Relation between atmospheric CO_2 and ground temperature known since $\approx 130~\text{years}$
- However, targeted action still missing today!
- ▶ HEP and related fields contribute to global emissions
 - Estimate per-researcher emissions \rightarrow Know your footprint
 - Four categories: Experiment, Institute, Computing, Travel
 - Evaluation of benchmark researcher:
 - \Rightarrow Total footprint $\approx 6~(\approx 18)$ times larger than what is needed for the $2.0^{\circ}C~(1.5^{\circ}C)$ target

 \Rightarrow Know your footprint to know where to start!

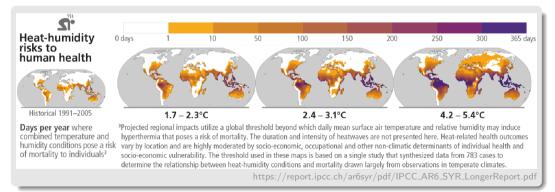
 \Rightarrow Every gram of CO₂ not emitted counts!

Please consider submitting your results \Rightarrow provides us better statistics to understand trends

Trends in Atmospheric CO₂ Concentration

- Keeling curve using measurements since 1958 at Mauna Loa Observatory
 - Combined with data from ice cores over last 800k years
 - \Rightarrow Composition of air trapped in ice from Antarctica

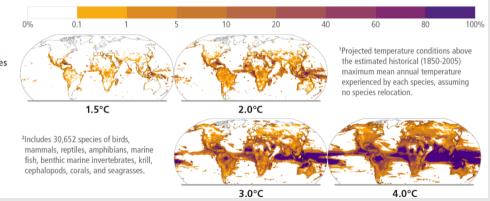
yHEP


universität freiburg

Consequences of Increased Ground Temperature

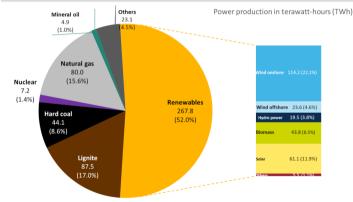
universität freiburg

- ▶ Projections for impact of climate change on natural and human systems:
 - With $> 2^{\circ}C$ rise in temperature, risks posed in regions around the equator:
 - $\Rightarrow~{\rm Risk}$ of losing $100\,\%$ of animal species
 - \Rightarrow Risk of Hyperthermia^{*} due to heat-humidity conditions throughout the year


*Hyperthermia: Failure of heat-regulating mechanisms of the body due to extreme external heat

Naman Kumar Bhalla

Know Your Footprint!



https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_LongerReport.pdf

German Conventional Electricity Mix

CLEAN Share of energy sources in gross German power production in 2023. Data: AGEB 2024.

Note: Government renewables targets are in relation to total power consumption (525.5 TWh in 2023), not production. Renewables share in gross German power consumption 2023: 51.8%.

🕝 BY SA 4.0

WIRE

Experiments: LHC Experiments

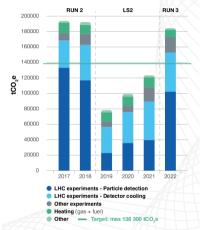
•		C 11	
IINIVA	reitat	freiburg	× 1
	Juli	TUDUIG	

Scope 1

	Year	Total	Corrected
	2017	193 600	168 293
Ξ	2018	192 100	162718
Run	2022	184 173	152 444
	Mean	-	161 151
E	2019	78 169	56 446
0 M	2020	98 997	75 958
Shutdown	2021	123 174	89 547
S	Mean	-	73 984

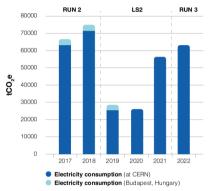
Scope 2

	Year	Total	Corrected
	2017	66 667	63 333
Ξ	2018	74884	71 140
Run	2022	63 161	60 003
	Mean	-	64 825
E.	2019	28 527	27 101
No.	2020	26202	24 891
Shutdown	2021	56382	53 563
S	Mean	-	35 185

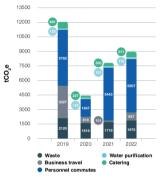

	Phase	Scope 1	Scope 2	Total
=	Run	2244	16206	18 4 50
Small	SD	1030	8796	9826
S	Overall	-	-	14 754
e	Run	78 332	16 206	94 538
Large	SD	35 962	8796	44 758
T	Overall	-	-	73 204

	Experiment	Members	Mean	Emissions
Small	ALICE LHCb	1968 [23] 1400 [24]	1684	8.76 tCO ₂ e
Large	CMS ATLAS	6288 [25] 6000 [26]	6144	11.91 tCO ₂ e

• Overall =
$$\frac{4 \times \mathsf{Run} + 3 \times \mathsf{SI}}{7}$$


CERN Scopes

universitätfreiburg yHEP

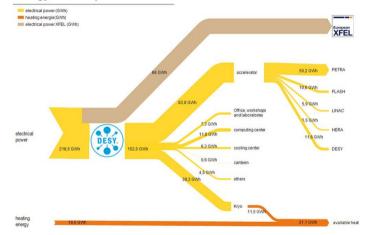

CERN SCOPE 1 EMISSIONS FOR 2017-2022 BY CATEGORY

"Other" includes air conditioning, electrical insulation, emergency generators and the fuel consumption of the CERN vehicle fleet.

CERN SCOPE 2 EMISSIONS FOR 2017–2022

Emission calculations for electricity follow a location-based methodology, with average yearly emission factors taken from ADEME Base Empreinte®. From 2017 to 2019, CERN operated a data centre at the Wigner Centre in Budapest, Hungary, for which the emissions are also shown. The location-based emission factors used for Hungary were taken from Bilan Carbone® V8.4.

CERN'S SCOPE 3 EMISSIONS 2019–2022 (EXCLUDING PROCUREMENT)


"Water' includes the water that is sent through the different elimitation pathways, as well as the water that is sent to wastkwater treatment plants. For emissions related to business travel and personnel commutes, only personnel on CENNs payout are included. The calculation methodology is aligned with the GHG protocol: the emission factors were retrieved from the Ecoivrent database, and the impact method used was IPCC 2021 GWP100 V1.01. All data from previous reporting years has been recalculated for this report. Emissions raising from procurement are not included and are reported segarately.

Experiments: DESY

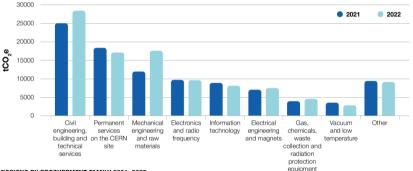
Energy consumption DESY 2021

Excluded: XFEL, offices, workshops, labs, canteen, computing centre and others

yHEP

Category	Emission
Energy (E)	8599
Purchase (P)	5924
Freight (F)	2675
Travel (T)	191
Commuting (C)	1083
Capital Goods (CG)	2166
Waste (W)	127
Total	20764
Corrected	19 363

 \blacktriangleright Corrected = Total – T – C – W


Category	Emissions [tCO ₂ e]
Electricity	2431 (19 224)
Heating/Cooling	13 584
Water	14
Waste	577
Procurement	14 486
Total	31 092 (47 885)

University of Freiburg

Category	Emissions [tCO ₂ e]
Electricity	3158
Heating (gas+fuel) + Other	11 250
Water purification	176
Waste	1875
Procurement	104 974
Total	121 433
Total without Procurement	16 459

CERN (Research Centre)

EMISSIONS BY PROCUREMENT FAMILY 2021-2022

"Other" includes: office supplies, furniture, transport, handling and vehicles; centralised expenses and codes for internal use; particle and photon detectors; health, safety and environment; optics and photonics.

Source of Emission	Emission Factor	
Long-distance Buses	0.031	kgCO ₂ e/km
Long-distance Trains	0.031	kgCO ₂ e/km
Personal Car	0.17	kgCO ₂ e/km
Flights within Europe	130	kgCO ₂ e/h
Transcontinental Flights	170	kgCO ₂ e/h
Hotel room	12	kgCO ₂ e/night
Event venue	0.19	kgCO ₂ e/day

▶ Long-distance buses and trains have equal impact by chance:

- TTW for Buses much higher than for trains
- Compensated by WTT for trains (German conventional mix) and infrastructure