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Problem: unweighted event generation is
becomes worse at higher partonic multiplicity (— HL-LHC)
save resources by using

forug — ttgggu (tf + 4 jets) a 4-layer NN is
calculation!

Problem solved?
— No! due to approximation errors!

Questions

How to get rid of the bias?
How much can we actually gain?

than a full colour-summed



Motivation

CPUh/Mevt

10!

10

10°!

multi-jet merged calculation

10°

10°

—e— parton level
—=— particle level

—e— particle level

WTA (> 6j)

Wt4jets, LHC@14TeV

prj > 20GeV, ;] < 6

@@® Hoche et al. (2019) Phys. Rev. D 100, 014024

Sherpa / Pythia + DIY @ NERSC

» computing time for unweighted events scales
exponentially with multiplicity
» two factors contribute:

(1) matrix elements become more expensive
(2) unweighting efficiency goes down (curse of
dimensionality)

» to deal with (2) need to improve phase space sampler,
e.g. using normalizing flows

But what about the ME evaluation time?

» we have to evaluate the ME for each trial event in
unweighting

» if unw. eff. is small,



Idea
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increase the number of unweighted events per second

» reduce event generation time by reducing the number of
calls to the ME
— usea (NN)

» correct all errors from the approximation in a 2nd
unweighting step

— method is
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Unweighted event generation explained
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» Monte Carlo sampled events come with weights w
» we often want to work with unweighted events
— produce unit-weight events by

— deliberately reduce sample size while retaining
most of its statistical power

> accept events with probability p,ccept = CJ;(;))’

where ¢ > Wy

unweighting efficiency
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— ratio between #accepted and #trials



Unweighting against a surrogate function
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replace target f(x) by surrogate s(x)

accept/reject probabilities are slightly wrong

— events get correction weights x = % = gf—s

leads to fully unweighted event
sample
()

Smax  Xmax

total efficiency: 9y - 1, =

trick:

if f(x)is expensive and s(x) is a good approximation,
we can save a lot of time
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Surrogate unweighting algorithm

Input phase
ST space point u
i Cheap!
approx. evt. weight s /
Expensive! l )
\ accept reject
exact evt. weight w — accept/reject _
. w Low acceptance
ratiox = —
s rate!
High acceptance l )
| reject
rate! accept/reject
acceptl
return u and W Stop
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Factorization-aware matrix element emulation
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soft/collinear factorization properties

|Mpi1]? = IMu? ® Vijk - (M2~ D} CijiDijic

[Catani, Seymour Nucl.Phys. B485 (1997) 291-419] {ijk}
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Factorisation-aware matrix element emulation
Comparison with naive (non-dipole) model for Z + 4j:
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Results: distribution of weights for tf + 3jets
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Results: validation plots
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Results: effective gain factors for LHC multi-jet processes

Using 1M training events:
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Outlook

> extend to more realistic settings:
— deal with hadronic processes (groups of partonic channels)
— multijet merged

» new baseline: CoMix colour-summed mode

» tune NN architecture (hyperparameter optimization)

» Isitalso worthwhile at NLO?
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Summary

This talk ...
» introduced a

» showed that the

to speed up unweighted event generation

for

colour-summed MEs (incl. hadronic initial states & massive quarks)

» demonstrated that

can be achieved for unweighting of colour-summed

MEs in relevant LHC processes

Conclusion ]

WC[)re physics using the same resources!
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Unweighting in two steps / partial unweighting
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let’s allow ¢ < w4 SO that

if accepted, events with p,cpt < 1 get unit weights
events with p,ccept >= 1are
— these events get overweights x = %

Thereis as long as we take the overweights
into account!

can still produce fully unweighted sample by
unweighting against overweights x, respecting their
maximum X a4
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Implementation details

» for NN evaluation use with all possible optimisations
> two step unweighting implemented in and
>

— use in existing workflows without changes
— apply to vectorised workflows for even better performance
» ME generator: AMEGIC

» we evaluate the performance for processes that are very important for the LHC:
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https://scipost.org/SciPostPhys.7.3.034
https://iopscience.iop.org/article/10.1088/1126-6708/2002/02/044

Going to NLO

> at NLO the weight function can become negative

» unweighting produces events with weight +1

v vy

use single maximal weight: W = |W|max > 0
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NN will happily output negative predictions but unweighting needs to be adapted

surrogate may predict wrong sign — signed overweights
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