Sustainability Strategy for the Cool Copper Collider

ICHEP 2024

Friday, July 19th 2024

Martin Breidenbach, Brendon Bullard, Emilio Alessandro Nanni,

Dimitris Ntounis, and Caterina Vernieri

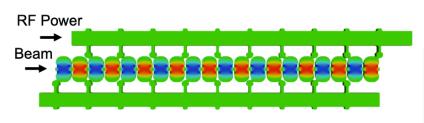
Stanford University &

SLAC National Accelerator Laboratory

Outline

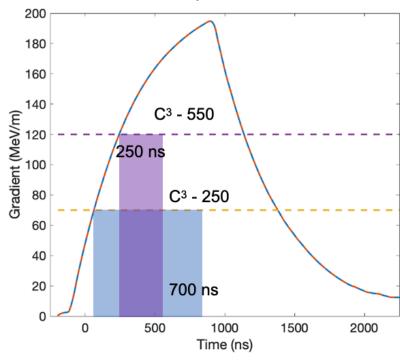
- Introduction
 - The Cool Copper Collider (C³)
- Comparison of carbon footprint for proposed colliders
 - Sensitivity comparison
 - Carbon footprint of operations
 - Carbon footprint of construction
 - Final comparison
- Conclusions
- Backup

Results presented here mainly from <u>PRX Energy 2, 047001</u> "Sustainability Strategy for the Cool Copper Collider". Additional info from: <u>JINST 18 P07053</u>, <u>JINST 18 P09040</u> and <u>PRAB 27, 061001</u>.



The Cool Copper Collider

- Cool Copper Collider (C³): newest proposal for a linear e+e- collider relying on normal conducting copper accelerating technology, with a novel cavity design that utilizes distributed coupling.
- · cryogenic temperature operation (LN2 at 77K), lower surface fields and higher accelerating gradients
 - → cost-effective, compact 8 km footprint.

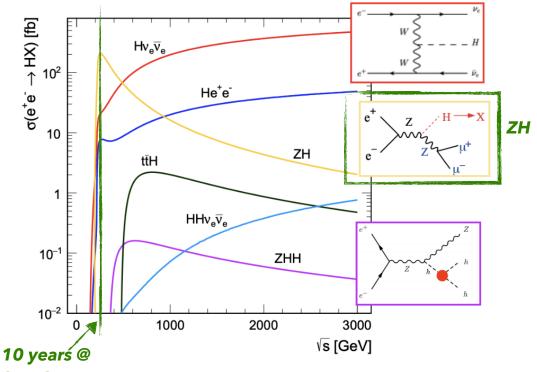

Electric field magnitude for equal power from RF manifold

Innovations

- Optimized design of RF cavities to minimize breakdown.
- Small aperture, distributed coupling from a common RF manifold → possible with precision CNC

ICHEP · July 19th, 2024

The Cool Copper Collider - Physics



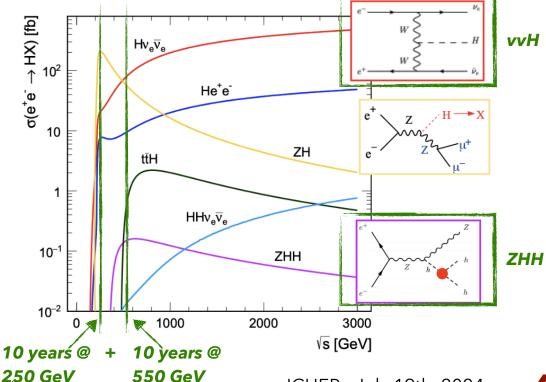
- C^3 targeted at operations at 250 GeV (ZH mode) and 550 GeV (ZHH mode only possible for linear colliders).
- The targeted inst. luminosity of $1.3(2.4) \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ at 250 (550) GeV would allow 2 (4) ab^{-1} of statistics after 10 years at each energy.

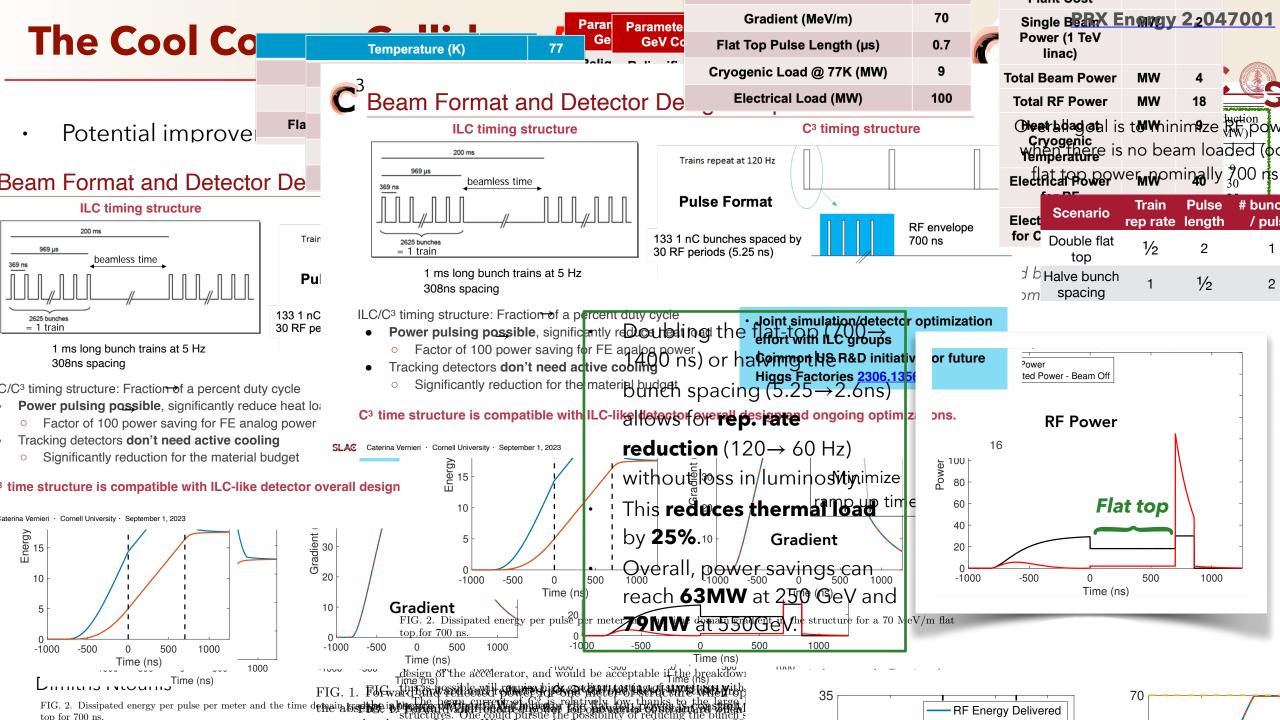
It's important to evaluate and optimize emissions due to construction and operation for the entire run

time of the collider.

Parameter	Value				
\sqrt{s} (GeV)	250	550			
Luminosity (cm $^{-2}$ sec $^{-1}$)	1.3×10^{34}	2.4×10^{34}			
Number of bunches per train	133–200	75			
Train repetition rate (Hz)	120	120			
Bunch spacing (ns)	$5.3-3.5^{a}$	3.5			
Site power (MW)	150	175			
Beam power (MW)	2.1	2.45			
Gradient (MeV/m)	70	120			
Geometric gradient (MeV/m)	63	108			
rf pulse length (ns)	700	250			
Shunt impedance $(M\Omega/m)$	300	300			
Length (km)	8	8			

The Cool Copper Collider - Physics


- C^3 targeted at operations at 250 GeV (ZH mode) and 550 GeV (ZHH mode only possible for linear colliders).
- The targeted inst. luminosity of $1.3(2.4) \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ at 250 (550) GeV would allow 2 (4) ab^{-1} of statistics after 10 years at each energy.


It's important to evaluate and optimize emissions due to construction and operation for the entire run

time of the collider.

Dimitris Ntounis

Parameter	Value				
\sqrt{s} (GeV)	250	550			
Luminosity (cm $^{-2}$ sec $^{-1}$)	1.3×10^{34}	2.4×10^{34}			
Number of bunches per train	133–200	75			
Train repetition rate (Hz)	120	120			
Bunch spacing (ns)	$5.3-3.5^{a}$	3.5			
Site power (MW)	150	175			
Beam power (MW)	2.1	2.45			
Gradient (MeV/m)	70	120			
Geometric gradient (MeV/m)	63	108			
rf pulse length (ns)	700	250			
Shunt impedance $(M\Omega/m)$	300	300			
Length (km)	8	8			

The Cool Copper Collider - Power Optimizations

- Changes in flat-top duration, bunch spacing and rep. rate can be combined to improve the luminosity per unit power up to 3x!
- The energy consumption throughout the entire lifetime of the machine can be reduced significantly!

Requires additional studies to evaluate feasibility on the accelerator (high-gradient tests with double flat top) and detector (evaluation of occupancy tolerances) side!

Luminosity for two beam parameter sets To	otal site power consumption

					$\mathcal{L} \ (10^{34} \ \text{cm}^{-2} \ \text{s}^{-1})$		P _{site} (MW)
Scenario	Flat top (ns)	Δt_b (ns)	n_b	f_r (Hz)	C^3 -250 (PS1)	C^3 -250 (PS2)	Both scenarios
Baseline	700	5.26	133	120	1.35	1.90	150
Double flat top	1400	5.26	266	60	1.35	1.90	125
Halve bunch spacing	700	2.63	266	60	1.35	1.90	129
Combined-half repetition rate	1400	2.63	532	60	2.70	3.80	154
Combined-nominal repetition rate	1400	2.63	532	120	5.40	7.60	180
				1			

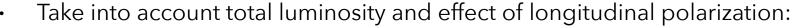
 $(10^{34} \text{ cm}^{-2} \text{ s}^{-1} \text{ (GW)}^{-1})$

Up to ~3x $\mathcal{L}/P_{\rm site}$ gain!

Beam configuration scenarios for \mathbb{C}^3 , which include modifications in the bunch spacing Δt_b , the number

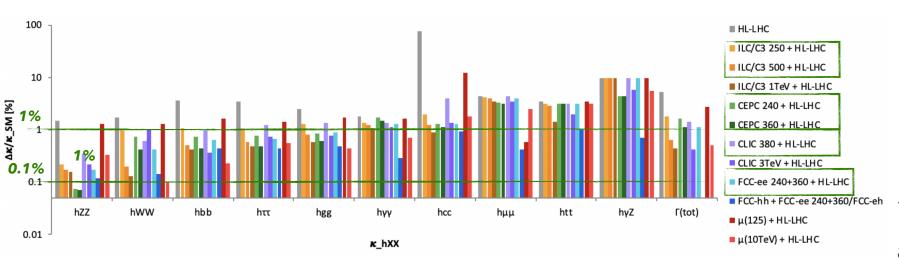
of bunches per train $n_{b'}$ and/or the train repetition rate $f_{r'}$ SLAC & Stanford University

~700ns


~8ms

Comparative Analysis **Dimitris Ntounis SLAC & Stanford University**

Sensitivity comparison for future colliders



- C3/ILC-250 performs similarly to CLIC-380, C3/ILC-550 outperforms CLIC-380
- C3/ILC-250 + 550 matches expected physics reach of FCC-ee

Evaluate **average precision gain** w.r.t.

HL-LHC:

All colliders reach precisions for the Higgs couplings at the 0.1-1% level

Relative precision (%) of Higgs boson coupling and total Higgs boson width measurements at future colliders when combined with the HL-LHC measurements, assuming two IPs for FCC-ee and CEPC.

 $w = \frac{\left(\frac{\delta \kappa}{\kappa}\right)_{\text{HL-LHC}} - \left(\frac{\delta \kappa}{\kappa}\right)_{\text{HL-LHC+HF}}}{\left(\frac{\delta \kappa}{\kappa}\right)_{\text{HL-LHC+HF}}}$

$$\left\langle \frac{\delta \kappa}{\kappa} \right\rangle = \frac{\sum_{i} w_{i} \left(\frac{\delta \kappa}{\kappa}\right)_{i}}{\sum_{i} w_{i}}$$

→weighs heavier most improved and most precise measurements, emphasizes individual colliders' strengths!

ICHEP · July 19th, 2024

Power consumption over machine lifetime

Calculate annual energy consumption for each collider accounting for down-time, efficiency and planned run schedule

Step 1: calculate energy consumption/year

Step 2: sum up years running in each energy

$$E_{\text{annual}} = P \left[\kappa_{\text{down}} T_{\text{year}} + \left(1 - \kappa_{\text{down}} \right) \left(T_{\text{collisions}} + T_{\text{development}} \right) \right]$$
Time in collision mode + 17% for magnitude.

$$E_{\text{total}} = \sum_{r \in \text{runs}} E(r)_{\text{annual}} T_{\text{run}}(r).$$

Circular

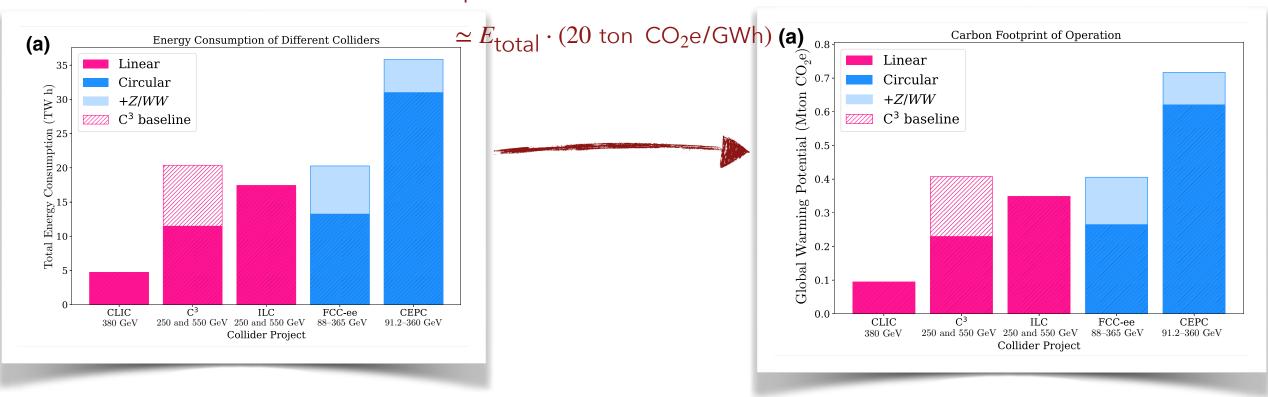
Power during Fraction of power collisions used during downtime (taken 30%)

Time in collision mode + 17% for machine development (1 per 6 weeks in collisions)

Linear

time (taken 30%)	~10-20 years ~100-180 MW			~15-20 years ~220-360 MW											
Higgs factory \sqrt{s} (GeV)	CLIC [44] 380		[<mark>12</mark>] 500	C ³ 250	[<mark>11]</mark> 550	C: 91.2	EPC [160		-	88, 9	01, 94	FCC [2 157, 163		62] 340–350	365
$P (MW)$ $T_{\text{collisions}} [10^7 \text{ s/year}]$	110 1.20	111 1.6	173 50	unecutiff to paréc	175 (96) 60	283	300 1.3	340 0	430	2.	22	247 1.	273 08	357	
$T_{\rm run}$ (years)	8	11	9	10	10	2	1	10	5	2	2	2	3	1	4
$\frac{\mathcal{L}_{inst}/IP \ (\times 10^{34} \ cm^{-2} \ s^{-1})}{\mathcal{L}_{int} \ (ab^{-1})}$	2.3 1.5	1.35	1.8 4	1.3 2	2.4 4	191.7 100	26.6 6	8.3 20	0.83	115 50	230 100	28 10	8.5 5	0.95 0.2	1.55 1.5

^aThe nominal run schedule reflects nominal data-taking conditions, which ignore other run periods such as luminosity ramp-up.


Carbon Footprint of operation

$GWP_{operations} = E_{total} \cdot carbon intensity$

Total energy consumption in TWh for the entire run-time of each collider.

GWP in Mton CO2e for the entire run-time of each collider.

FCC and CEPC consumption driven by long run times and SR compensation, linear colliders having overall smaller energy consumption

Dimitris Ntounis

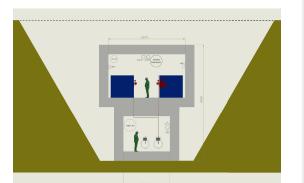
SLAC & Stanford University

ICHEP · July 19th, 2024

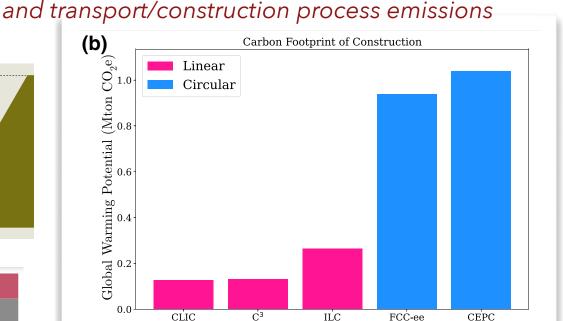
Carbon Footprint of construction

Accounting for main tunnel length, other structures

• ARUP analysis: ~80% of construction emissions from materials (A1-A3), rest from material transport &


construction process (A4-A5).

• GWP for tunnels ~6tn/m


• For C³, cut-and-cover can be used

• Use displaced earth for shielding

• Only ~40 km³ must be transported

Project	Main tunnel length (km)	GWP (kton CO₂e)					
		Main tunnel	+ Other	+ A4-A5			
FCC	90.6	578	751	939			
CEPC	100	638	829	1040			
ILC	13.3	97.6	227	270			
CLIC	11.5	73.4	98	125			
C ₃	8.0	133	3	146			

Global warming potential in Mton CO2e for various collider concepts.

ILC

 $250~{\rm and}~550~{\rm GeV}~~250~{\rm and}~550~{\rm GeV}~~88\text{--}365~{\rm GeV}$

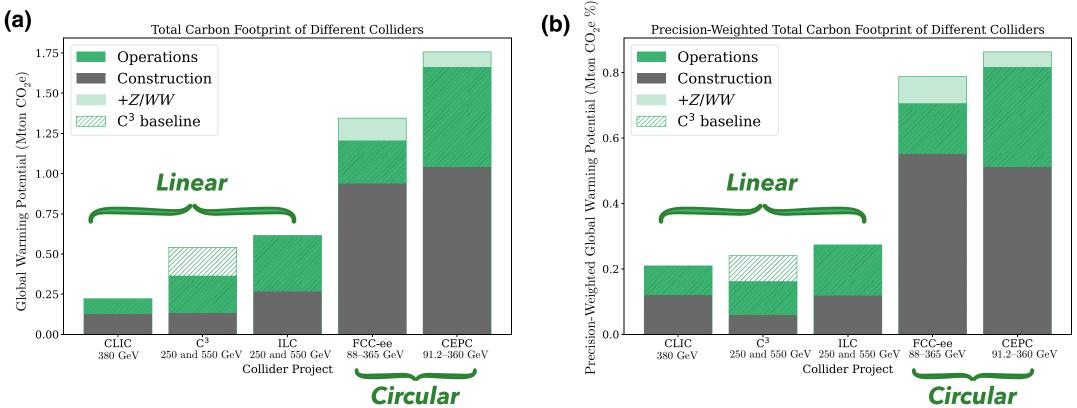
Collider Project

 $380~{\rm GeV}$

FCC-ee

CEPC

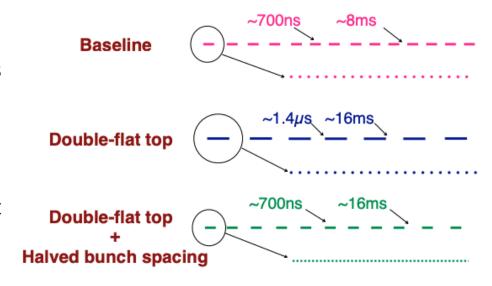
91.2-360 GeV


High construction GWP for circular colliders driven by tunnel length Carbon intensity for operation depends on hosting site and operation timeline

Total Carbon Footprint - Comparison

Total global warming potential from construction and operation for all collider concepts, (a) unweighted and (b) weighted with respect to the average coupling precision for each collider.

Accounting for physics impact, linear colliders are overall superior in terms of GWP. Circular colliders limited by requirements for large-radius tunnels. C³'s compact size can offer unique benefits for a sustainable collider.



Conclusions - Sustainable parameter set for C³

- C³ emerges as one of the most sustainable options for an e⁺e⁻ Higgs factory.
- The halved-bunch spacing scenario was <u>recently chosen</u> as the sustainability-oriented parameter set and achieves the **same luminosity** with ~30% less total site power consumption.
- Implications of this parameter set on detector performance are currently under evaluation,

C³ Trains at 120Hz, 1 train 133 bunches Bunches are 5 ns apart

C³ Trains at 60Hz, 1 train 266 bunches Bunches are 5 ns apart

C³ Trains at 60Hz, 1 train 266 bunches Bunches are 2.65 ns apart

Constant luminosity

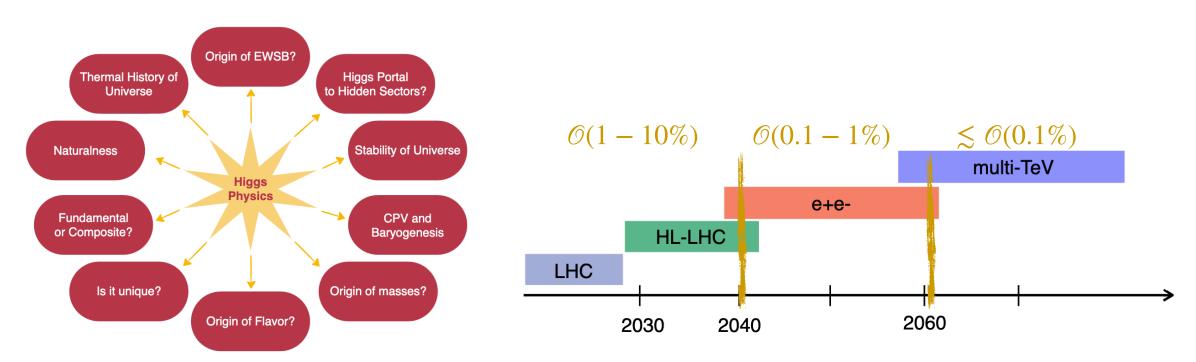
Scenario	C^3 -250	$C^3 - 550$	C^3 -250 s.u.	C^{3} -550 s.u.
Luminosity $[x10^{34}]$	1.3	2.4	1.3	2.4
$\operatorname{Gradient} \left[\operatorname{MeV/m} \right]$	70	120	70	120
Effective Gradient [MeV/m]	63	108	63	108
Num. Bunches per Train	133	75	266	150
Train Rep. Rate [Hz]	120	120	60	60
Bunch Spacing [ns]	5.26	3.5	2.65	1.65
Single Beam Power [MW]	2	2.45	2	2.45
Site Power [MW]	~ 150	~ 175	~110	~ 125

Conclusions

- We presented an outline of the envisaged sustainability strategy for C³ and proposed a framework for the physics-weighted evaluation of the carbon footprint of various colliders.
- Linear colliders have overall smaller carbon footprints, with circular collider limited by construction emissions due to the required large tunnel lengths.
- C³ with power savings can serve as a cost-effective, compact and **sustainable** option for the realization of a future e⁺e⁻ collider.
- Regardless of which collider is built in the end, it is essential that sustainability considerations are integrated in its design and operations from its conception.

Thank you for your attention!

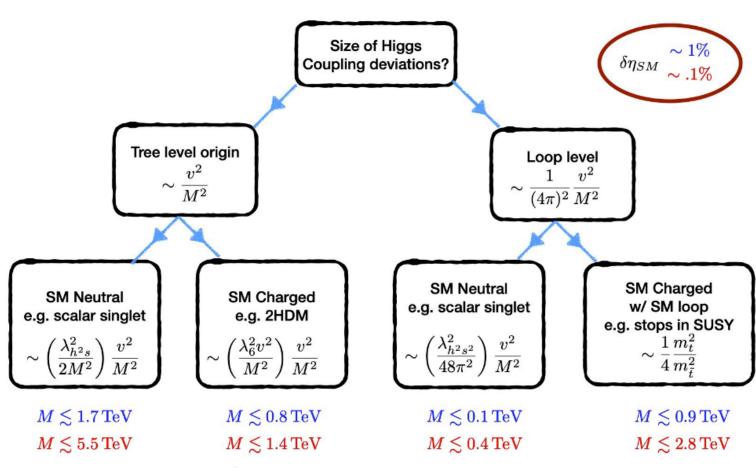
For more information on C³, visit: https://web.slac.stanford.edu/c3/



Benefits of e⁺e⁻ colliders

- The Higgs boson is the latest experimentally verified addition to the SM and a pathway to answering many fundamental questions in Particle Physics and beyond.
- This requires measurements of its properties with precision at the percent and sub percent level, which lies beyond the capabilities of HL-LHC.

Snowmass EF01 & EF02 Report


Benefits of e⁺e⁻ colliders

SLAC (1)

Higgs precision measurements at the percent and sub-percent level enables tests of new Physics at the **TeV** scale.

Conservative Scaling for Upper Limit on Mass Scale Probed by Higgs Precision

Snowmass EF01 & EF02 Report

Benefits of e⁺e⁻ colliders

- Electron-positron colliders are precision machines that can serve as **Higgs factories**. They offer:
 - A well-defined initial state
 - A "clean" and trigger less experimental environment
 - Longitudinal polarization (only possible at linear machines) → increases sensitivity to EW observables, suppresses backgrounds, controls systematics

 $\sim O(10^{-1})\%$ Level precision

						HL-LHC +		
		Relative Precision (%)	HL-LHC	CLIC-380	$ILC-250/C^3-250$	$ ILC-500/C^3-550 $	FCC 240/360	CEPC-240/360
		hZZ	1.5	0.34	0.22	0.17	0.17	0.072
5 a No. 4 Sec. 4		hWW	1.7	0.62	0.98	0.20	0.41	0.41
		$hbar{b}$	3.7	0.98	1.06	0.50	0.64	0.44
		$h au^+ au^-$	3.4	1.26	1.03	0.58	0.66	0.49
1112		hgg	2.5	1.36	1.32	0.82	0.89	0.61
		$hcar{c}$	-	3.95	1.95	1.22	1.3	1.1
		$h\gamma\gamma$	1.8	1.37	1.36	1.22	1.3	1.5
		$h\gamma Z$	9.8	10.26	10.2	10.2	10	4.17
A DAY STATE		$h\mu^+\mu^-$	4.3	4.36	4.14	3.9	3.9	3.2
= pp/LHC	e+e-	$htar{t}$	3.4	3.14	3.12	2.82/1.41	3.1	3.1
**	G*C	hhh	50	50	49	20	33	-
		$\Gamma_{ m tot}$	5.3	1.44	1.8	0.63	1.1	1.1

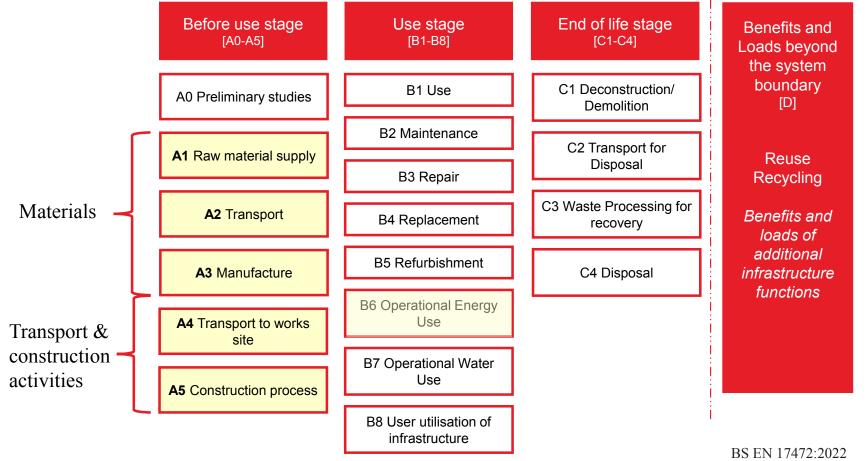
 $\sim \mathcal{O}(1)\%$ Level precision

Sensitivity comparison for future colliders

- Take into account total luminosity and effect of longitudinal polarization:
 - C3/ILC-250 performs similarly to CLIC-380, C3/ILC-550 outperforms CLIC-380
 - C3/ILC-250 + 550 matches expected physics reach of FCC-ee

				HL-LHC +		
Relative precision (%)	HL-LHC	CLIC at 380 GeV	ILC at 250 GeV/C^3 at 250 GeV	ILC at 500 GeV/C^3 at 550 GeV	FCC at 240 GeV/360 GeV	CEPC at 240 GeV/360 GeV
hZZ	1.5	0.34	0.22	0.17	0.17	0.072
hWW	1.7	0.62	0.98	0.20	0.41	0.41
$hbar{b}$	3.7	0.98	1.06	0.50	0.64	0.44
$h\tau^+\tau^-$	3.4	1.26	1.03	0.58	0.66	0.49
hgg	2.5	1.36	1.32	0.82	0.89	0.61
$hc\bar{c}$		3.95	1.95	1.22	1.3	1.1
$h\gamma\gamma$	1.8	1.37	1.36	1.22	1.3	1.5
$h\gamma Z$	9.8	10.26	10.2	10.2	10	4.17
$h\mu^+\mu^-$ $ht\bar{t}$	4.3	4.36	4.14	3.9	3.9	3.2
htt	3.4	3.14	3.12	2.82/1.41	3.1	3.1
hhh	50	50	49	20	33	
Γ_{tot}	5.3	1.44	1.8	0.63	1.1	1.1
Weighted average		0.94	0.86	0.45	0.59	0.49

Evaluate average precision gain w.r.t. **HL-LHC:**


$$= \frac{\left(\frac{\delta \kappa}{\kappa}\right)_{\text{HL-LHC}} - \left(\frac{\delta \kappa}{\kappa}\right)_{\text{HL-LHC+HF}}}{\left(\frac{\delta \kappa}{\kappa}\right)_{\text{HL-LHC+HF}}}$$

$$\left\langle \frac{\delta \kappa}{\kappa} \right\rangle = \frac{\sum_{i} w_{i} \left(\frac{\delta \kappa}{\kappa}\right)_{i}}{\sum_{i} w_{i}}$$

Relative precision (%) of Higgs boson coupling and total Higgs boson width measurements at future colliders when combined with the HL-LHC measurements, assuming two IPs for FCC-ee and CEPC. SLAC & Stanford University **Dimitris Ntounis**

Life Cycle Assessment

ARUP analysis

Lifecycle assessment has been evaluated for ILC and CLIC linear accelerator concepts $\xrightarrow{}$ \rightarrow extended to include estimates for energy production emissions and other facilities

C³ Sustainable Parameter Set

Scenario	C^3 -250	C^3 -550	${ m C}^{3}$ -250 s.u.	C^{3} -550 s.u.
Luminosity [x10 ³⁴]	1.3	2.4	1.3	2.4
Gradient [MeV/m]	70	120	70	120
Effective Gradient [MeV/m]	63	108	63	108
Length [km]	8	8	8	8
Num. Bunches per Train	133	75	266	150
Train Rep. Rate [Hz]	120	120	60	60
Bunch Spacing [ns]	5.26	3.5	2.65	1.65
Bunch Charge [nC]	1	1	1	1
Crossing Angle [rad]	0.014	0.014	0.014	0.014
Single Beam Power [MW]	2	2.45	2	2.45
Site Power [MW]	~150	~175	~110	~125