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• QGP constitutes one of the main research areas in 
QCD physics. 

• Time evolution of QCD matter before thermalization
has been studied using classical approaches such as 
classical field simulations or kinetic theory

• It has not yet been resolved from fundamental 
principles of QCD

• Lattice QCD is only applicable at low baryon 
densities where the numerical sign problem does 
not interfere with calculations

1.1 Introduction

• Quantum computing is a potential tool for solving real-time dynamics from QCD first principles
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1.2 State of the art in quantum computer technology

 Currently, we are in the Noisy Intermediate-Scale quantum (NISQ) era:

• Quantum processors containing up to ~ 1000 qubits 

• Sensitive to their environment

• Prone to quantum decoherence

IBM Condor employs over 1000 qubits ⇨

 Quantum computing (QC) is a rapidly-emerging technology that harnesses the laws of quantum 
mechanics to solve problems too complex for classical computers.

 Quantum information science has proved useful in a broad range 
of physics applications

 Quantum simulation is potentially more advantageous in reducing the 
problem complexity from exponential to polynomial 
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1.3 Quantum computing in quantum field theory

We study QFT in thermal equilibrium preparing for a broader study of real-time dynamics

Jordan, Lee & Preskill, 2011 [arXiv:1112.4833]

Klco & Savage, 2018 [arXiv:1808.10378]

Martínez et al., 2016 [arXiv:1605.04570v1]

Jordan, Lee & Preskill, 2014 [arXiv:1404.7115]

 𝜙4 theory

 Fermion fields

 Schwinger model

de Jong et al., 2022 [arXiv:2106.08394]

https://arxiv.org/abs/1112.4833
https://arxiv.org/abs/1112.4833
https://arxiv.org/abs/1808.10378
https://arxiv.org/abs/1404.7115
https://arxiv.org/abs/1404.7115
https://arxiv.org/abs/2106.08394
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1.4 Thermal field theory

Expectation value Partition function 

We focus on phase space distribution:

The trace can be calculated by summing the expectation values over the complete set of states

𝑓𝑝
𝑖 = â𝑝

𝑖 †â𝑝
𝑖

𝛽

 Thermal states are typically difficult to prepare on a circuit and involve non-unitary operations. 

 Quantum imaginary time evolution (QITE) requires exponentially less space and time per iteration 
compared with their classical counterparts 

Motta, 2019 [arXiv:1901.07653]

https://arxiv.org/abs/1901.07653


2.1 Fermion fields in 1+1 dimensions
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Lagrangian
density

Majorana 
fermions

 Step 1: put the theory on a spatial lattice:

with 𝜓𝑛 𝑡 ≡ 𝑎𝜓 𝑡, 𝑛𝑎

 Step 2: Map it onto qubits: N qubits needed to represent N Majorana fermions

One can use both coordinate and momentum space to represents on qubits

Qian & Wu, 2024 [arXiv:2404.07912]
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https://arxiv.org/abs/2404.07912
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2.2 Representation in coordinate space

 Step 1: In terms of the creation/annihilation operators, the Hamiltonian may be written as 

The fermions can be map to qubits using the Jordan-Wigner transformation

 Step 2: Map it onto qubits using eigenstates of 𝑎𝑛
†𝑎𝑛 as the computation basis

𝐪𝐮𝐛𝐢𝐭 → 𝜓 = 𝛼 0 + 𝛽 1

𝐛𝐢𝐭 → {0,1}
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2.3 Representation in momentum space

 Step 1: Hamiltonian in terms of creation and annihilation operators in momentum space

We use coordinate space (field operator space) for simulations and momentum space for analytical calculations

 Step 2: Map it onto qubits using eigenstates of 𝑎𝑝
†𝑎𝑝 as the computation basis

1

2

3
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2.4 Simulation results for free fermion fields

Using the QITE algorithm

Analytical result: Fermi-Dirac distribution 

Qian & Wu, 2024 [arXiv:2404.07912]

https://arxiv.org/abs/2404.07912
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2.5 Thermal states of interacting fermion fields on lattice

 Four-fermion interaction vanishes → we introduce one more Majorana field

 There exist two types of quasiparticles with two phase-space distributions:

where
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2.6 Simulation results for interacting fermion fields

Qian & Wu, 2024 [arXiv:2404.07912]

https://arxiv.org/abs/2404.07912
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3.1 SCALAR FIELD THEORY

Lagrangian density for the 𝜙4 theory in d + 1

Field and conjugate-field operators 

 Step 1: Discretised hamiltonian

12

 Step 2: Map it onto qubits

We use dimensionless hamiltonian
in (1+1) spacetime

IC, Qian & Wu [work in progress]

One can use both coordinate and momentum space to represents on qubits

ഥΦ𝑛, ഥΠ𝑛′ = 𝑖𝛿𝑛𝑛′
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3.2 Field operator discretisation

• The lattice Hilbert space is a tensor product of 
local Hilbert space at each lattice site

• The local Hilbert space at a single lattice site 
is infinite dimensional because there are 
infinitely many bosons contributing to the 
local wave function

• We truncate the number of bosons by a 
cutoff number 𝑁𝑏 and then digitize the 
continuous field operators to discretized 
values

Discrete field operators Φ𝑛 acting on 𝐻𝑛

Discrete conjugate field operators Π𝑛 acting on 𝐻𝑛𝜙𝑛 = −∞,∞

𝜙𝑛 = −𝜙max, 𝜙max

Macridin et al., 2021 [arXiv:2108.10793]

https://arxiv.org/abs/2108.10793
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3.3 Scalar field theory on the qubit

 We use a 1D lattice of N quantum registers to represent N lattice 
points. In each register, we use 𝑛𝑄 qubits

𝑁𝜑 = 2𝑛𝑄
𝑛𝑇 = 𝑁𝑛𝑄

 We represent the {|𝜑𝛼⟩}𝑛 on the nth quantum register using binary representation of the label α. 
The generic state |k⟩ in coordinate space is 

 Again, we can do the mapping onto qubits using eigenstates of 𝑎𝑝
†𝑎𝑝 as the computation basis, but 

now 𝑎𝑝
†𝑎𝑝 must be truncated
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3.5 Simulation results for scalar fields
IC, Qian & Wu [work in progress]

Analytical results: Bose-Einstein distribution 𝑓𝑝 ≡ â𝑝
†â𝑝 𝛽

𝑓𝑝 =
1

𝑒𝛽𝐸𝑝 − 1
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Summary

• We formulated the quantum field theory for Majorana fermions and scalar fields in 1+1 
dimensions on the qubits and studied its various thermal properties at finite temperature using 
quantum simulation algorithms

• We showed that the QITE algorithm can be used to study thermal observables such as the 
distribution function at finite temperature.

• Our numerical results using quantum simulation are compared to analytical calculations and exact 

diagonalization methods, showing good agreement
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Quantum imaginary time evolution

Trotter formula: Real-time Hamiltonian operator 

determined by solving the 
linear matrix equation

whose matrix elements are 
evaluated as expectation values 

on the quantum circuit

Motta, 2019 [arXiv:1901.07653]

https://arxiv.org/abs/1901.07653
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Thermal expectation on the circuit

Minimally entangled typical thermal state method (METTS)

Redefined quantum state

in QITE: 

Thermal observables 

Equivalent to sampling 𝜙𝑘 with probability 𝑃𝑘/𝑍 and summing its expectations 𝑂𝑘 𝛽

White, 2009 [arXiv:0902.4475]

https://arxiv.org/abs/0902.4475
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Thermal states of free fermion fields on lattice

Vacuum energy
𝐸Ω𝐹 satisfies

Phase-space distribution function 
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Diagonalization of the discrete Hamiltonian

Discretizing ψ and expressing 𝜓𝐵 in terms of 𝑏† and b:

• H is a hermitian 2𝑁+1 × 2𝑁+1 matrix
• All its off-diagonal matrix elements vanish between the eigenstates of 𝑏† b
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Field operator representation


