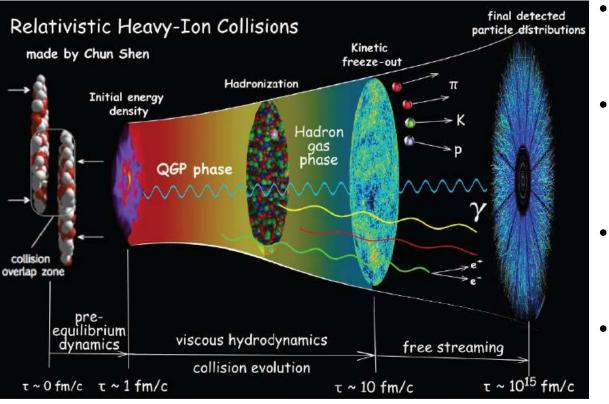
Quantum simulation of thermal field theories

Iván Cuntín, Wenyang Qian, Bin Wu

Instituto Galego de Física de Altas Enerxías – Universidade de Santiago de Compostela

1.1 Introduction



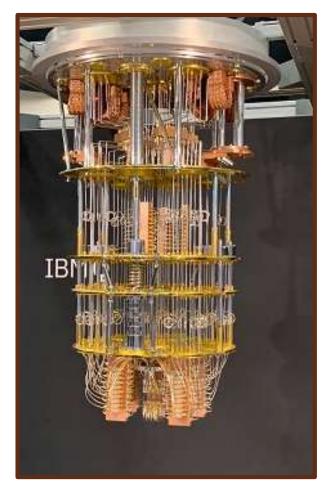
- QGP constitutes one of the main research areas in QCD physics.
- Time evolution of QCD matter before thermalization has been studied using classical approaches such as classical field simulations or kinetic theory
- It has not yet been resolved from fundamental principles of QCD
- Lattice QCD is only applicable at low baryon densities where the numerical sign problem does not interfere with calculations

• Quantum computing is a potential tool for solving real-time dynamics from QCD first principles

1.2 State of the art in quantum computer technology

- Quantum computing (QC) is a rapidly-emerging technology that harnesses the laws of quantum mechanics to solve problems too complex for classical computers.
- > Currently, we are in the Noisy Intermediate-Scale quantum (NISQ) era:
 - Quantum processors containing up to ~ 1000 qubits
 - Sensitive to their environment
 - Prone to quantum decoherence
- Quantum information science has proved useful in a broad range of physics applications
- Quantum simulation is potentially more advantageous in reducing the problem complexity from exponential to polynomial

IBM Condor employs over 1000 qubits \Rightarrow



1.3 Quantum computing in quantum field theory

 $\succ \phi^4$ theory

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m_0^2 \phi^2 - \frac{1}{4!} \lambda_0 \phi^4$$
Jordan, Lee & Preskill, 2011 [arXiv:1112.4833]
Klco & Savage, 2018 [arXiv:1808.10378]

Fermion fields

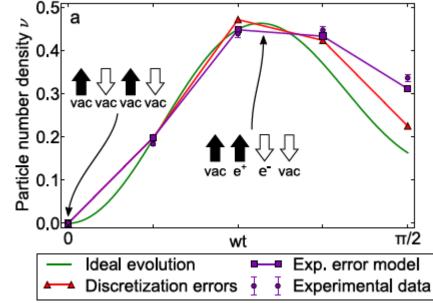
$$\mathcal{L} = \sum_{j=1}^{N} \bar{\psi}_j (i\gamma^{\mu} \partial_{\mu} - m) \psi_j + \frac{g^2}{2} \left(\sum_{j=1}^{N} \bar{\psi}_j \psi_j \right)^2$$

Jordan, Lee & Preskill, 2014 [arXiv:1404.7115]

Schwinger model

$$\mathcal{L} = \bar{\psi}(i\mathcal{D} - m)\psi - \frac{1}{4}F^{\mu\nu}F_{\mu\nu}$$

de Jong et al., 2022 [arXiv:2106.08394]



Martínez et al., 2016 [arXiv:1605.04570v1]

We study QFT in thermal equilibrium preparing for a broader study of real-time dynamics

1.4 Thermal field theory

- > Thermal states are typically difficult to prepare on a circuit and involve non-unitary operations.
- Quantum imaginary time evolution (QITE) requires exponentially less space and time per iteration compared with their classical counterparts

Motta, 2019 [arXiv:1901.07653]

Expectation value
$$\langle \hat{O} \rangle_{\beta} \equiv Z_{\beta}^{-1} \operatorname{Tr}[e^{-\beta \hat{H}} \hat{O}]$$
 Partition function $Z_{\beta} \equiv \operatorname{Tr}[e^{-\beta \hat{H}}]$

The trace can be calculated by summing the expectation values over the complete set of states

We focus on phase space distribution:

$$f_p^{\,i} = \left\langle \hat{\mathbf{a}}_p^{i} \,^{\dagger} \hat{\mathbf{a}}_p^{i} \right\rangle_{\beta}$$

2.1 Fermion fields in 1+1 dimensions

Lagrangian
density
$$\mathcal{L} = \frac{1}{2} \overline{\psi} (i\partial - m) \psi - \mathcal{H}_I(\psi)$$
 Majorana
fermions $\begin{cases} \psi^{\dagger} = \psi^T \\ \{\psi^{\alpha}(t, x), \psi^{\beta}(t, y)\} = \delta(x - y) \delta^{\alpha\beta} \end{cases}$

Step 1: put the theory on a spatial lattice: $x \in \Omega_x \equiv \{0, a, \dots, (N-1)a\}$ $L \equiv aN$

$$\widehat{H} = \frac{1}{2} \sum_{n} \overline{\psi}_{n} \left[-\frac{i}{2a} \gamma^{1} (\psi_{n+1} - \psi_{n-1}) + m \psi_{n} \right] - \frac{r}{4a} \sum_{n} \overline{\psi}_{n} (\psi_{n+1} - 2\psi_{n} + \psi_{n-1}) + \widehat{H}_{I}$$
with $\psi_{n}(t) \equiv \sqrt{a} \psi(t, na)$
Qian & Wu, 2024 [arXiv:2404.07912]

Step 2: Map it onto qubits: N qubits needed to represent N Majorana fermions

One can use both coordinate and momentum space to represents on qubits

2.2 Representation in coordinate space

Step 1: In terms of the creation/annihilation operators, the Hamiltonian may be written as

$$\hat{H} = \hat{H}_0 + \hat{H}_I \qquad \hat{H}_0 = \sum_n \left[-i \frac{a_n a_{n+1} + a_n^{\dagger} a_{n+1}^{\dagger}}{2a} + m \left(a_n^{\dagger} a_n - \frac{1}{2} \right) \right]$$
$$\psi_n = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} a_n \\ a_n^{\dagger} \end{pmatrix} \qquad -\frac{r}{2a} \sum_n [a_n^{\dagger} (a_{n+1} - 2a_n + a_{n-1}) + 1]. \qquad \{a_n, a_{n'}^{\dagger}\} = \delta_{nn'}$$

> Step 2: Map it onto qubits using eigenstates of $a_n^{\dagger}a_n$ as the computation basis

$$|n_0 n_1 \cdots n_{N-1}\rangle_x = \prod_{i=0}^{N-1} (a_i^{\dagger})^{n_i} |0\rangle_x \equiv (a_0^{\dagger})^{n_0} (a_1^{\dagger})^{n_1} \cdots (a_{N-1}^{\dagger})^{n_{N-1}} |0\rangle_x,$$
$$x\langle n_0 n_1 \cdots n_{N-1}| = x\langle 0| \prod_{i=N-1}^0 (a_i)^{n_i} \equiv x\langle 0| (a_{N-1})^{n_{N-1}} (a_{N-2})^{n_{N-2}} \cdots (a_0)^{n_0}$$

The fermions can be map to qubits using the Jordan-Wigner transformation

$$a_n^{\dagger} = \frac{\sigma_n^X - i\sigma_n^Y}{2} \prod_{i=0}^{n-1} \sigma_i^Z \qquad a_n = \frac{\sigma_n^X + i\sigma_n^Y}{2} \prod_{i=0}^{n-1} \sigma_i^Z$$

bit
$$\rightarrow \{0,1\}$$

qubit $\rightarrow |\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

2.3 Representation in momentum space

Step 1: Hamiltonian in terms of creation and annihilation operators in momentum space

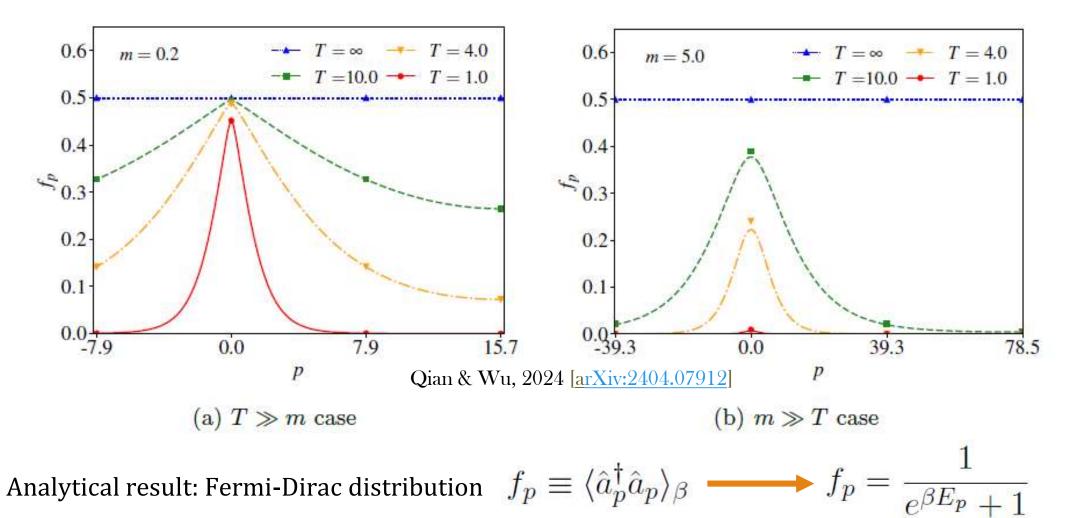
1
$$\tilde{a}_{p}^{\dagger} \equiv \frac{1}{\sqrt{N}} \sum_{n} e^{ipan} a_{n}^{\dagger}, \quad \tilde{a}_{p} \equiv \frac{1}{\sqrt{N}} \sum_{n} e^{-ipan} a_{n}.$$
 $\Delta p \equiv 2\pi/L$
2 $\begin{pmatrix} \hat{a}_{p}^{\dagger} \\ \hat{a}_{-p} \end{pmatrix} = \frac{1}{2\sqrt{E_{p}}} \begin{pmatrix} \sqrt{p^{+}} + \sqrt{p^{-}} & \sqrt{p^{+}} - \sqrt{p^{-}} \\ \sqrt{p^{-}} - \sqrt{p^{+}} & \sqrt{p^{+}} + \sqrt{p^{-}} \end{pmatrix} \begin{pmatrix} \tilde{a}_{p}^{\dagger} \\ \tilde{a}_{-p} \end{pmatrix}$
3 $\hat{H}_{0} \equiv \sum_{p} E_{p} (\hat{a}_{p}^{\dagger} \hat{a}_{p} - 1/2) \qquad E_{p} = \sqrt{\left(m + \frac{2r}{a} \sin^{2} \frac{ap}{2}\right)^{2} + p_{a}^{2}}$

> Step 2: Map it onto qubits using eigenstates of $a_p^{\dagger}a_p$ as the computation basis

We use coordinate space (field operator space) for simulations and momentum space for analytical calculations

2.4 Simulation results for free fermion fields

Using the QITE algorithm



2.5 Thermal states of interacting fermion fields on lattice

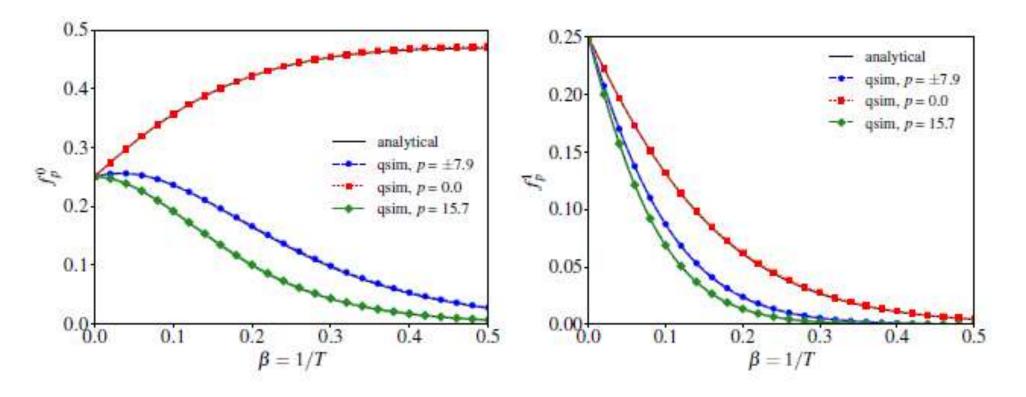
► Four-fermion interaction vanishes → we introduce one more Majorana field $\psi_B = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} b \\ b^{\dagger} \end{pmatrix}$

$$L = \int dx \left[\frac{1}{2} \bar{\psi} (i\partial \!\!\!/ - m_0)\psi - \frac{g}{4} (\bar{\psi}\psi)(\bar{\psi}_B\psi_B) \right] + \frac{1}{2} \bar{\psi}_B (i\gamma^0 \partial_t - M)\psi_B, \quad \hat{H}_I = \frac{M}{2} \bar{\psi}_B\psi_B + \frac{g}{4} \int dx \bar{\psi}\psi \bar{\psi}_B\psi_B$$

> There exist two types of quasiparticles with two phase-space distributions:

$$\begin{split} f_p^0 &\equiv \langle \hat{a}_p^{\dagger} \hat{a}_p \rangle_{\beta} = \frac{Z_{\beta}^0}{Z_{\beta}} \frac{1}{1 + e^{\beta E_p(\bar{m})}}, \qquad f_p^1 &\equiv \langle \hat{a}_p'^{\dagger} \hat{a}_p' \rangle_{\beta} = \frac{Z_{\beta}^1}{Z_{\beta}} \frac{1}{1 + e^{\beta E_p(\bar{m}+g)}} \\ & \text{where} \qquad Z_{\beta} = Z_{\beta}^0 + Z_{\beta}^1 \\ Z_{\beta}^0 &\equiv e^{-\beta E_\Omega} \prod_p (1 + e^{-\beta E_p(\bar{m})}), \qquad Z_{\beta}^1 &\equiv e^{-\beta E_\Omega^1} \prod_p (1 + e^{-\beta E_p(\bar{m}+g)}) \\ \hline \bar{m} = E_0 - E_\Omega \end{split}$$

2.6 Simulation results for interacting fermion fields



Qian & Wu, 2024 [arXiv:2404.07912]

3.1 SCALAR FIELD THEORY

 $\mathcal{L} = \frac{1}{2} [\partial_{\mu} \phi \partial^{\mu} \phi - m \phi^2] - \frac{\lambda}{4!} \phi^4$ Lagrangian density for the ϕ^4 theory in d + 1 $[\phi(x), \phi(y)] = [\pi(x), \pi(y)] = 0, \qquad [\phi(x), \pi(y)] = i\delta(x - y)$ Field and conjugate-field operators $H_{\text{lat}} = a^d \sum_{n=1}^{N-1} \left[\frac{1}{2} \pi_n^2 + \frac{1}{2} m^2 \phi_n^2 + \frac{1}{2} (\nabla \phi)_n^2 + \frac{\lambda}{4!} \phi_n^4 \right]$ Step 1: Discretised hamiltonian $\bar{H} = \sum_{n=1}^{N-1} \left[\frac{1}{2} \bar{\Pi}_n^2 + \frac{1}{2} \bar{m}^2 \bar{\Phi}_n^2 + \frac{1}{2} (\bar{\Phi}_{n+1} - \bar{\Phi}_n)^2 + \frac{\bar{\lambda}}{4!} \bar{\Phi}_n^4 \right]$ We use dimensionless hamiltonian in (1+1) spacetime $\bar{\Phi}_n = a^{\frac{d-1}{2}} \phi_n, \quad \bar{\Pi}_n = a^{\frac{d+1}{2}} \pi_n \qquad [\bar{\Phi}_n, \bar{\Pi}_{n'}] = i\delta_{nn'}$ Step 2: Map it onto qubits

One can use both coordinate and momentum space to represents on qubits

3.2 Field operator discretisation

- The lattice Hilbert space is a tensor product of local Hilbert space at each lattice site
- The local Hilbert space at a single lattice site is infinite dimensional because there are infinitely many bosons contributing to the local wave function

 $\phi_n = (-\infty, \infty)$

• We truncate the number of bosons by a cutoff number *N*_b and then digitize the continuous field operators to discretized values

$$\phi_n = [-\phi_{\max}, \phi_{\max}]$$

Discrete field operators Φ_n acting on H_n $\Phi_n |\varphi_{\alpha}\rangle_n = \varphi_{\alpha} |\varphi_{\alpha}\rangle_n, \qquad \alpha = 0, 1, ..., N_{\varphi} - 1$ $\varphi_{\alpha} = \Delta_{\varphi} \left(\alpha - \frac{N_{\varphi} - 1}{2} \right), \qquad \Delta_{\varphi} = \sqrt{\frac{2\pi}{N_{\varphi}\bar{m}}}$

Discrete conjugate field operators Π_n acting on H_n

$$\Pi_{n} = \bar{m}\mathcal{F}_{n}\Phi_{n}\mathcal{F}_{n}^{-1}$$
$$\Pi_{n} |\kappa_{\beta}\rangle_{n} = \kappa_{\beta} |\kappa_{\beta}\rangle_{n}, \qquad \beta = 0, 1, ..., N_{\varphi} - 1$$
$$\kappa_{\beta} = \Delta_{\kappa} \left(\beta - \frac{N_{\varphi} - 1}{2}\right), \qquad \Delta_{\kappa} = \sqrt{\frac{2\pi\bar{m}}{N_{\varphi}}},$$

$$\left[\Phi_n, \Pi_n\right] |n\rangle_n = i |n\rangle_n + \mathcal{O}(\epsilon)$$

Macridin et al., 2021 [arXiv:2108.10793]

3.3 Scalar field theory on the qubit

➢ We use a 1D lattice of N quantum registers to represent N lattice points. In each register, we use n_Q qubits

$$\begin{aligned} N_{\varphi} &= 2^{n_Q} \\ n_T &= N n_Q \end{aligned}$$

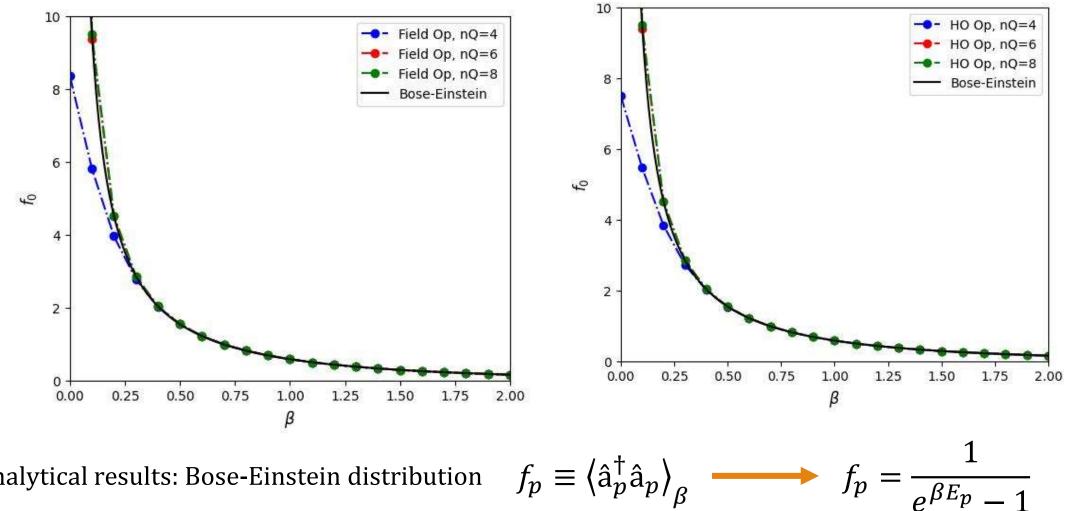
We represent the $\{|\varphi_{\alpha}\rangle\}_n$ on the nth quantum register using binary representation of the label α. The generic state $|k\rangle$ in coordinate space is

$$|k\rangle = |k\rangle_0 |k\rangle_1 \dots |k\rangle_{N-1} = (|q_{n_Q-1}\rangle |q_{n_Q-2}\rangle \dots |q_0\rangle)_0 (|q_{n_Q-1}\rangle |q_{n_Q-2}\rangle \dots |q_0\rangle)_1 \dots (|q_{n_Q-1}\rangle |q_{n_Q-2}\rangle \dots |q_0\rangle)_{N-1}$$

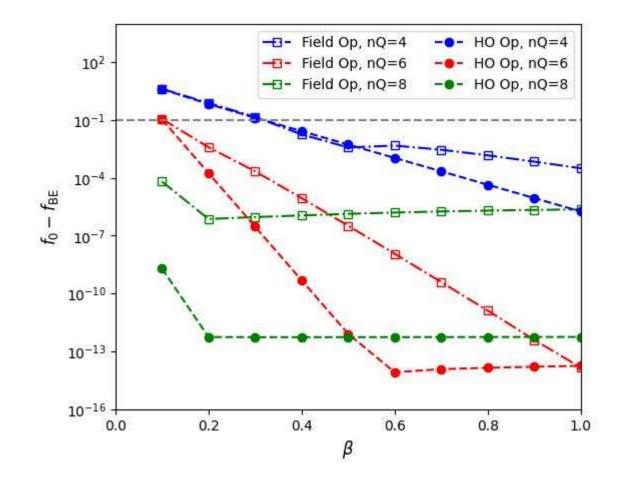
Again, we can do the mapping onto qubits using eigenstates of a[†]_pa_p as the computation basis, but now a[†]_pa_p must be truncated

3.5 Simulation results for scalar fields

IC, Qian & Wu [work in progress]



 $f_p \equiv \left< \hat{\mathbf{a}}_p^\dagger \hat{\mathbf{a}}_p \right>_\beta$ Analytical results: Bose-Einstein distribution



Summary

- We formulated the quantum field theory for Majorana fermions and scalar fields in 1+1 dimensions on the qubits and studied its various thermal properties at finite temperature using quantum simulation algorithms
- We showed that the QITE algorithm can be used to study thermal observables such as the distribution function at finite temperature.
- Our numerical results using quantum simulation are compared to analytical calculations and exact diagonalization methods, showing good agreement

Quantum imaginary time evolution

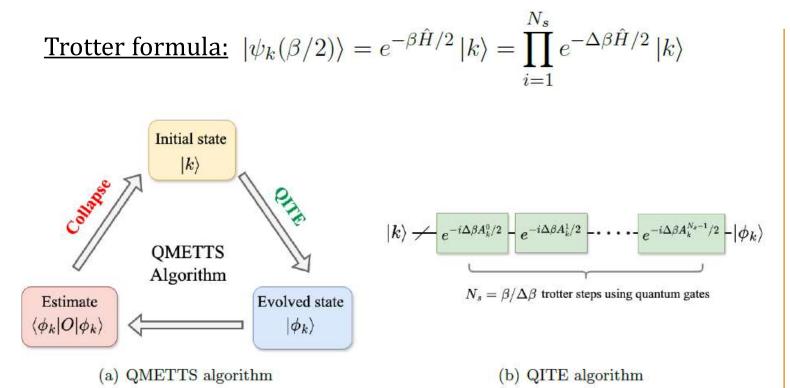


Figure 1. Skematic diagram of the workflow for the QMETTS and QITE algorithms [24] used in this work. Note the QITE is a subroutine in the QMETTS.

$$|\psi_k^{i+1}\rangle = e^{-\Delta\beta \hat{H}/2} \, |\psi_k^i\rangle = \sqrt{c_k^i(\Delta\beta)} e^{-i\Delta\beta \hat{A}_k^i/2} \, |\psi_k^i\rangle + \mathcal{O}(\Delta\beta^2)$$

Real-time Hamiltonian operator

 $\hat{A}_k^i = \sum_I a_I \sigma_I$

determined by solving the linear matrix equation

 $(\boldsymbol{S} + \boldsymbol{S}^T)\boldsymbol{a}_i = \boldsymbol{b}$

whose matrix elements are evaluated as expectation values on the quantum circuit

$$b_{I} = -i \langle \psi_{k}^{i} | (\hat{H}\sigma_{I} - \sigma_{I}^{\dagger}\hat{H}) | \psi_{k}^{i} \rangle / \sqrt{c_{k}^{i}(\Delta\beta)}$$
$$S_{IJ} = \langle \psi_{k}^{i} | \sigma_{I}^{\dagger}\sigma_{J} | \psi_{k}^{i} \rangle$$

Thermal expectation on the circuit

Minimally entangled typical thermal state method (METTS)

Redefined quantum state
$$|\phi_k\rangle = P_k^{-1/2} e^{-\beta \hat{H}/2} |k\rangle$$
, $P_k = \langle k | e^{-\beta \hat{H}} |k\rangle$
in QITE: $|\phi_k\rangle \equiv \prod_{i=1}^{N_s} e^{-i\Delta\beta \hat{A}_k^i/2} |k\rangle$, $P_k \equiv \prod_{i=1}^{N_s} c_k^i (\Delta\beta)$
Thermal observables $\langle \hat{O} \rangle_{\beta} = \sum_{k \in S} \frac{P_k}{Z} \langle \hat{O}_k \rangle_{\beta}$, $\langle \hat{O}_k \rangle_{\beta} = \langle \phi_k | \hat{O} | \phi_k \rangle$, $Z = \sum_{k \in S} P_k$.
Equivalent to sampling $|\phi_k\rangle$ with probability P_k/Z and summing its expectations $\langle O_k \rangle_{\beta}$

Thermal states of free fermion fields on lattice

$$\hat{H}_0 |p\rangle_p = (E_p + E_{\Omega_F}) |p\rangle_p$$

Vacuum energy E_{Ω_F} satisfies

$$\hat{H}_0|0\rangle_p = E_{\Omega_F}|0\rangle_p \equiv -\frac{1}{2}\sum_p E_p|0\rangle_p$$

$$\psi_n(t) = e^{i\hat{H}_0 t}\psi_n e^{-i\hat{H}_0 t} = \sum_n \frac{1}{n!} \underbrace{[i\hat{H}_0, [i\hat{H}_0, [\cdots, [i\hat{H}_0, \psi_n] \cdots]]]}_n$$
$$= \sum_p \frac{1}{\sqrt{2NE_p}} [\hat{a}_p u_p e^{-iE_p t + ipan} + \hat{a}_p^{\dagger} u_p^* e^{iE_p t - ipan}].$$

Phase-space distribution function $f_p \equiv \langle \hat{a}_p^{\dagger} \hat{a}_p \rangle_{\beta} \longrightarrow f_p = \frac{1}{e^{\beta E_p} + 1}$

$$f_p = \frac{1}{2E_p} \sum_{n} \left[\gamma^0 u_p \right]_{\alpha'} \left[\bar{u}_p \gamma^0 \right]_{\alpha} e^{ipan} \langle \bar{\psi}_n^{\alpha'} \psi_0^{\alpha} \rangle_{\beta}$$

Diagonalization of the discrete Hamiltonian

Discretizing ψ and expressing ψ_B in terms of b^{\dagger} and b:

$$\hat{H} = \hat{H}_0 + M\left(b^{\dagger}b - \frac{1}{2}\right) + g\sum_n \left(a_n^{\dagger}a_n - \frac{1}{2}\right)\left(b^{\dagger}b - \frac{1}{2}\right)$$

- *H* is a hermitian $2^{N+1} \times 2^{N+1}$ matrix
- All its off-diagonal matrix elements vanish between the eigenstates of $b^{\dagger} b$

$$\hat{H}_{\psi}^{0} = \hat{H}_{0} - \frac{M}{2} - \frac{g}{2} \left(a_{n}^{\dagger} a_{n} - \frac{1}{2} \right) = \sum_{p} E_{p}(\bar{m}) \left(\hat{a}_{p}^{\dagger} \hat{a}_{p} - \frac{1}{2} \right) - \frac{M}{2}$$
$$\hat{H}_{\psi}^{1} = \hat{H}_{0} + \frac{M}{2} + \frac{g}{2} \left(a_{n}^{\dagger} a_{n} - \frac{1}{2} \right) = \sum_{p} E_{p}(\bar{m} + g) \left(\hat{a}_{p}'^{\dagger} \hat{a}_{p}' - \frac{1}{2} \right) + \frac{M}{2}$$

Field operator representation

$$\hat{\Phi}_n = -\frac{\Delta_{\varphi}}{2} \sum_{j=0}^{n_Q-1} 2^j \sigma_z^j = -\frac{\varphi_{\max}}{N_{\varphi}-1} \sum_{j=0}^{n_Q-1} 2^j \sigma_z^j.$$

$$\hat{\Pi}_n = \mathcal{F}_n \Phi_n \mathcal{F}_n^{-1}$$

$$\mathcal{F}_n = e^{-i\frac{n_{\phi}\delta^2}{2\pi}} \left(\prod_{j=0}^{n_Q-1} R_Z^j(-2^j\delta)\right) \mathcal{QFT}_n \left(\prod_{j=0}^{n_Q-1} R_Z^j(-2^j\delta)\right)$$