An Augmented QCD Phase Portrait: Mapping Quark-Hadron Deconfinement for Hot, Dense, Rotating Matter under Magnetic Field

Saturday, 20 July 2024 18:10 (17 minutes)

We augment the conventional $T\text{-}\mu_B$ planar phase

diagram for QCD matter by extending it to a multi-dimensional domain spanned by temperature T, baryon chemical potential μ_B , external magnetic field B and angular velocity ω . This is relevant for peripheral heavyion collisions or astrophysical systems where B, ω are non-zero. Using two independent approaches, one from a rapid rise in entropy density and another dealing with a dip in the speed of sound, we identify deconfinement in the framework of a modified statistical hadronization model. We find that the deconfinement temperature $T_C(\mu_B, \omega, eB)$ decreases nearly monotonically with increasing μ_B, ω and eB with the most prominent drop (by nearly 40 to 50 MeV) in T_C occurring when all the three quasi-control (collision energy and impact parameter dependent) parameters are tuned simultaneously to finite values that are achievable in present and upcoming heavy-ion colliders.

Alternate track

1. Strong Interactions and Hadron Physics

I read the instructions above

Yes

Primary author: MUKHERJEE, Gaurav (Bhabha Atomic Research Centre, Homi Bhabha National Institute)

Co-authors: DUTTA, Dipanwita (Bhabha Atomic Research Centre (IN)); MISHRA, Dipak (Bhabha Atomic Research Centre (IN))

Presenter: MUKHERJEE, Gaurav (Bhabha Atomic Research Centre, Homi Bhabha National Institute)

Session Classification: Heavy Ions

Track Classification: 07. Heavy Ions