

Neutrino masses from

A Hybrid Type I + III Inverse Seesaw Mechanism in $U(1)_{R-I}$ -symmetric MSSM

- -
	- (pronounced as "

Based on *JHEP* **11 (2023) 085**

Cem Murat Ayber

ICHEP 2024

Neutrinos Have Mass

Symmetry Magazine/Sandbox Studio, Chicago

$$
U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_1 \\ c_{11} \\ -s_{13}e^{i} \end{pmatrix}
$$

$$
\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2} = 7.41_{-0.20}^{+0.21} \qquad \sin^2 \theta_{12} = 0.307_{-0.011}^{+0.012}
$$
\n
$$
\frac{\Delta m_{31}^2}{10^{-3} \text{ eV}^2} = 2.511_{-0.027}^{+0.028} \qquad \sin^2 \theta_{13} = 0.02224_{-0.00057}^{+0.00056}
$$
\n
$$
\delta_{\text{CP}} / \text{°} = 232_{-25}^{+39}
$$

I. Esteban et al., JHEP(2020) 178 www.nu-fit.org

Cem Murat Ayber, Carleton University **ICHEP 2024, Prague, 20.07.2024**

- SM particles are *neutral* under *U*(1)*^R* Superpartners have $+1$ R-charges
	- $M_{\lambda} \bar{\lambda} \lambda^c$ R-charges: $1 + 1 \neq 0$ Majorana gaugino masses are fork
	- Introduce three adjoint fields with $R = -1$ charges:
		- **‣**A hypercharge singlet: *Singlino S*
		- \blacktriangleright An $SU(2)$ triplet: *Tripletino T*
		- \blacktriangleright An $SU(3)_c$ octet: Octino
	- Higgsino mass terms are forbidde

Introduce two *inert* doublets: R_u , R_d , $\langle R_u \rangle = 0$

U(1)*R*-symmetric SUSY

L. J. Hall and L. Randall, Nucl. Phys. B352, 289 (1991)

G. D. Kribs, E. Poppitz, and N. Weiner, Phys. Rev. D78, 055010 (2008)

Supersoft SUSY Breaking

Dirac gaugino masses are generated via D-term spurions.

P. J. Fox, A. E. Nelson and N. Weiner, JHEP 08 (2002) 035

$$
\int d^2\theta \sqrt{2} c_{\tilde{B}} \frac{W'_\alpha}{\Lambda_M} W^\alpha W_{\tilde{B}} \Phi_S \Rightarrow \frac{\sqrt{2} c_{\tilde{B}} D}{\Lambda_M} \widehat{BS} \equiv M_{\tilde{B}} \widehat{BS} \stackrel{D = \langle W'_\alpha \rangle : SUSY-br}{\text{vev of a D-term spurior}}
$$
\n
$$
\int d^2\theta \sqrt{2} c_{\tilde{W}} \frac{W'_\alpha}{\Lambda_M} W^\alpha W_{\tilde{W}} \Phi_T \Rightarrow \frac{\sqrt{2} c_{\tilde{W}} D}{\Lambda_M} \tilde{W} T \equiv M_{\tilde{W}} \tilde{W} T
$$
\n
$$
\psi_{\tilde{B}}^T = \left(\tilde{B} S^\dagger\right)^T
$$
\nDirac
\n
$$
\psi_{\tilde{W}}^T = \left(\tilde{W} T^\dagger\right)^T
$$
\n
$$
\text{Squiginos}
$$

Cem Murat Ayber, Carleton University **ICHEP 2024, Prague, 20.07.2024**

SUSY is broken in a hidden sector

SUSY breaking is communicated to the visible sector at a **messenger scale** Λ_M .

U(1)*R*−*L*-symmetric SUSY

 $U(1)_{R-I}$ symmetry can provide a natural mechanism for neutrino mass generation.

SM leptons are charged under *U*(1)*R*−*^L*

Allows the mixing between electroweakinos

← Neutralinos and neutrinos Neut ← Charginos and charged leptons LFV

Cem Murat Ayber, Carleton University **ICHEP 2024, Prague, 20.07.2024**

Lets extend the R-symmetry by including lepton number L Frugiuele, C., Grégoire, T., Kumar, P. *et al. JHEP* 2013, 156

 $U(1)_R \to U(1)_{R-L}$

U(1)*R*−*L*-breaking AMSB

As with all global symmetries, $U(1)_{R-L}$ must be broken due to gravity.

Anomaly mediation

Majorana gaugino masses (but small)

$$
\psi^T_{\tilde{W}}
$$

 $\psi^T_{\tilde{R}}$

Cem Murat Ayber, Carleton University **ICHEP 2024, Prague, 20.07.2024**

Dirac partners can also acquire Majorana masses: $m_S, m_T \sim \mathcal{O}(m_{3/2})$

U(1)_{R−*L*} is approximately conserved when $\Lambda_M \ll M_{Pl}$ \longrightarrow $m_{\tilde{B}}$, $m_{\tilde{W}}$, m_S , $m_T \propto m_{3/2} \ll M_{\tilde{B}}$, $M_{\tilde{W}}$

 $U(1)_{R-L}$ is (approximately) broken:

L. Randall and R. Sundrum, Nucl. Phys. B557 (1999) 79 G.F. Giudice, et.al., JHEP 12 (1998) 027 T. Gherghetta, et al., Nucl. Phys. B 559 (1999) 27

Neutrino masses

U(1)_{*R*−*L*[−] conserving, dimension-6 operators:}

$$
\frac{1}{\Lambda_M^2} \int d^2 \theta \, \left(f^i_{\tilde{B}} W^{\prime}_{\alpha} W^{\alpha}_{\tilde{B}} H_{\mu} L_i + f^i_{\tilde{W}} W^{\prime}_{\alpha} W^{\alpha}_{\tilde{W}} H_{\mu} L_i \right) \Longrightarrow f^i_{\tilde{B}} \frac{M_{\tilde{B}}}{\Lambda_M} \tilde{B} \, h_{\mu} \mathcal{E}_i + f^i_{\tilde{W}} \frac{M_{\tilde{W}}}{\Lambda_M} \tilde{W} h_{\mu} \mathcal{E}_i,
$$

 $f^i_{\tilde{B},\tilde{W}}$: Dimensionless coefficients, $i=e,\mu,\tau$

P. Coloma and **S. Ipek**, Phys. Rev. Lett. 117 (2016) 111803

Explicitly violate $U(1)_R$ and $U(1)_L$

If bino, wino, and higgsinos mix, the coefficients $f^i_{\tilde R\; \tilde W}$ are rescaled by a mixing angle. This will not affect the neutrino mixing structure. \tilde{B}, \tilde{W}

$$
\mathbf{Y}_{\tilde{B},\tilde{W}}^T = \begin{pmatrix} Y_{\tilde{B},\tilde{W}}^e & Y_{\tilde{B},\tilde{W}}^\mu & Y_{\tilde{B},\tilde{W}}^\tau \end{pmatrix} = \frac{M_{\tilde{B},\tilde{W}}}{\Lambda_M} \begin{pmatrix} f_{\tilde{B},\tilde{W}}^e & f_{\tilde{B},\tilde{W}}^\mu & f_{\tilde{B},\tilde{W}}^\tau \end{pmatrix}
$$

Cem Murat Ayber, Carleton University **ICHEP 2024, Prague, 20.07.2024**

Bino and wino act as *RH* neutrinos

1 $\frac{1}{\Lambda_M}$ $\int d^2\theta d^2\bar{\theta} \phi^{\dagger} \left(d_S^i \Phi_S H_u L_i + d_T^i \Phi_T H_u L_i \right) \Longrightarrow$

Neutrino masses

$U(1)_{R-L}$ -violating, dimension-5 operators:

$$
H_u L_i) \implies \frac{m_{3/2}}{\Lambda_M} \left(d_S^{\, i} S \, h_u \ell_i + d_T^{\, i} T \, h_u \ell_i \right)
$$

 $d_{S,T}^{\,i}$: Dimensionless coefficients, $i=e,\mu,\tau$ $\qquad \phi=1+\theta^2 m_{3/2}$: The conformal compensator

Highly suppressed compared to the $U(1)_{R-L}$ – conserving terms because $m_{3/2} \ll M_{\tilde{B},\tilde{W}}$

P. Coloma and **S. Ipek**, Phys. Rev. Lett. 117 (2016) 111803

$$
\mathbf{G}_{S,T}^T = \begin{pmatrix} G_{S,T}^e & G_{S,T}^\mu & G_{S,T}^\tau \end{pmatrix} = \frac{m_{3/2}}{\Lambda_M} \begin{pmatrix} d_{S,T}^e & d_{S,T}^\mu & d_{S,T}^\tau \end{pmatrix}
$$

Cem Murat Ayber, Carleton University **ICHEP 2024, Prague, 20.07.2024**

S and *T* are the other *RH* neutrinos

 $U(1)_{R-I}$ **-conserving** $U(1)_{R-I}$ **-violating**

Cem Murat Ayber, Carleton University **ICHEP 2024, Prague, 20.07.2024**

$$
\frac{3/2}{\ell} \overline{\ell} h_u S^{\dagger} + m_{\tilde{B}} \tilde{B} \tilde{B} + m_S S S
$$
\n
$$
\frac{3/2}{\ell} \overline{\ell} h_u T^{\dagger} + m_{\tilde{W}} \tilde{W} \tilde{W} + m_T T T
$$
\nType-III ISS texture

This is a Hybrid Type I+III inverse seesaw scenario!

Neutrino masses

Neutrino mass matrix in the (ν_i, \tilde{B}) $\bf\widetilde{B}$, *W* ˜ , *S*, *T*) **basis after EWSB**

$$
M_{\nu} = \begin{pmatrix} \mathbf{0}_{3\times 3} & \mathbf{Y}_{\tilde{B}} v & \mathbf{Y}_{\tilde{W}} v & \mathbf{G}_{S} v & \mathbf{G}_{T} v \\ \mathbf{Y}_{\tilde{B}}^{T} v & m_{\tilde{B}} & 0 & M_{\tilde{B}} & 0 \\ \mathbf{Y}_{\tilde{W}}^{T} v & 0 & m_{\tilde{W}} & 0 & M_{\tilde{W}} \\ \mathbf{G}_{S}^{T} v & M_{\tilde{B}} & 0 & m_{S} & 0 \\ \mathbf{G}_{T}^{T} v & 0 & M_{\tilde{W}} & 0 & m_{T} \end{pmatrix}
$$

 $m_{\tilde{B},\tilde{W}} \propto m_{3/2}, m_{S}, m_{T}, N$

Cem Murat Ayber, Carleton University **10** 10 **ICHEP 2024, Prague, 20.07.2024**

In its most general form, the mass matrix generates **three massive** light neutrinos with the correct mass splittings.

$$
\mathbf{Y}_{\tilde{B},\tilde{W}}^T = \frac{M_{\tilde{B},\tilde{W}}}{\Lambda_M} \left(f_{\tilde{B},\tilde{W}}^e f_{\tilde{B},\tilde{W}}^{\mu} f_{\tilde{B},\tilde{W}}^{\tau} \right) \quad \mathbf{G}_{S,T}^T = \frac{m_{3/2}}{\Lambda_M} \left(d_{S,T}^e d_{S,T}^{\mu} d_{S,T}^{\tau} d_{S,T}^{\tau} \right)
$$

Analytically unsolvable due to the large number of free parameters

$$
M_{\widetilde{B}},\,M_{\widetilde{W}},\,\Lambda_M,\,f^i_{\widetilde{B}},\,f^i_{\widetilde{W}},\,d^i_S,\,d^i_T
$$

Cem Murat Ayber, Carleton University ICHEP 2024, Prague, 20.07.2024

Neutrino masses: A Simplified Scenario

Non-zero Majorana masses, $m_{S,T} \neq 0$, and vanishing couplings of Dirac partners, $G_{S,T} \sim 0$

$$
c^{d=5} = -\frac{1}{\Lambda_M^2} \left(m_S \mathbf{u}_{\tilde{B}} \mathbf{u}_{\tilde{B}}^T + m_T \mathbf{u}_{\tilde{W}} \mathbf{u}_{\tilde{W}}^T \right) \equiv -\frac{1}{\Lambda_M^2} \mathcal{O}
$$

$$
\mathbf{Y}_{\tilde{B},\tilde{W}}^T \equiv y_{\tilde{B},\tilde{W}} \mathbf{u}_{\tilde{B},\tilde{W}}^T, \quad \mathbf{G}_{S,T}^T \equiv g_{S,T} \mathbf{v}_{S,T}^T, \quad y_{\tilde{B},\tilde{W}} = \frac{M_{\tilde{B},\tilde{W}}}{\Lambda_M},
$$

$$
,\qquad g_{S,T} = \frac{m_{3/2}}{\Lambda_M},\qquad \mathbf{u}_{\tilde{B}} \cdot \mathbf{u}_{\tilde{B}} = \mathbf{u}_{\tilde{W}} \cdot \mathbf{u}_{\tilde{W}} = 1,\qquad \mathbf{u}_{\tilde{B}}^{\dagger} \mathbf{u}_{\tilde{W}} = \mathbf{u}_{\tilde{W}}^{\dagger} \mathbf{u}_{\tilde{B}} \equiv \lambda_{\text{NO}}
$$

The light-neutrino mass eigenvalues in the normal ordering are

$$
m_1 = 0, \quad m_{2,3} = \frac{v^2 (m_S + m_T)}{\sqrt{2\Lambda_M^2}} \sqrt{1 - 2\beta_{\text{NO}} \pm \sqrt{1 - 4\beta_{\text{NO}}}} \qquad m_{2,3} \propto m_T + m
$$

where $\beta_{\rm NO}$ is set by the mass-squared splitting ratios,

$$
\beta_{\rm NO} = -2r(r+1) + \sqrt{r(r+1)}(2r+1) \simeq 0.13 \text{ with } r = \frac{|\Delta m_{\rm sol}^2|}{|\Delta m_{\rm atm}^2|} \simeq 0.03
$$

Cem Murat Ayber, Carleton University **12** 12 **ICHEP 2024, Prague, 20.07.2024**

Cem Murat Ayber, Carleton University ICHEP 2024, Prague, 20.07.2024

Assuming $\hat{\mathbf{e}}_{2,3} = N_{2,3}(a_{2,3}\mathbf{u}_{\tilde{B}} + b_{2,3}\mathbf{u}_{\tilde{W}})$, ̂

Neutrino Mass Eigensystem

$$
u_{\tilde{B}}^{i} = \left(\frac{a_{2}}{b_{2}} - \frac{a_{3}}{b_{3}}\right)^{-1} \left[\frac{1}{b_{2}N_{2}}U_{i2} - \frac{1}{b_{3}N_{3}}U_{i3}\right] \qquad u_{\tilde{W}}^{i} = \left(\frac{b_{2}}{a_{2}} - \frac{b_{3}}{a_{3}}\right)^{-1} \left[\frac{1}{a_{2}N_{2}}U_{i2} - \frac{1}{a_{3}N_{3}}U_{i3}\right]
$$

$$
u_{\tilde{B},\tilde{W}}^{i} \propto \frac{m_{T}}{m_{S}}
$$

$$
\lambda_{\rm NO} = \sqrt{1 + \beta_{\rm NO} \frac{(m_S + m_T)^2}{m_S m_T}}, \quad\n\lambda_{2,3} = (m_S - m_T) \mp \sqrt{(m_S - m_T)^2 + 4m_S m_T \lambda_{\rm NO}^2}, \quad\nN_{2,3} = \frac{1}{\sqrt{a_{2,3}^2 + b_{2,3}^2 + 2a_{2,3}b_{2,3}\lambda_{\rm NO}}}
$$

$$
U_{\text{PMNS}} = \begin{pmatrix} U_{i1} & U_{i2} & U_{i3} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{e}}_1 & \hat{\mathbf{e}}_2 & \hat{\mathbf{e}}_3 \end{pmatrix}, \quad i = e, \mu, \tau
$$

The entries in the PMNS matrix fix the mass eigenstates to accommodate the correct mixing structure

Cem Murat Ayber, Carleton University ICHEP 2024, Prague, 20.07.2024 14

$$
m_T/m_S
$$

Neutrino Mixing Structure

 $U(1)_{R-L}$ -conserving wino term, $\textit{vY}^i_{\tilde{W}}\tilde{W}^+\mathscr{C}^-_i$, mixes charginos and charged leptons $\stackrel{\prime l}{\tilde{W}}W$ \widetilde{W}

Low Energy Constraints

The bivo-wivo-light neutrino mixing can result in observable lepton-flavor-violating (LFV) effects, which can be constrained by (non-)observations.

⁺*ℓ*[−] *i*

$$
\widetilde{W}^{+c} - e^- \text{ mixing } \propto \mathcal{O}\left(\frac{vY_{\tilde{W}}}{M_{\tilde{W}}}\right)
$$

Cem Murat Ayber, Carleton University **15** 15 16 Research 2024, Prague, 20.07.2024

Flavor-changing neutral currents at tree level!

N

er Murat Ayber, Carleton University **16** 16 and 16 and 16 and 17 and 18 and

Z[∗] μ^- *e* $\frac{1}{2}$ **e** *B*[†] !*†* − W^+ *Z*[∗]

 $\mu \rightarrow e e e$

type-I: one loop $\tt type-III: tree level$

type-I: one loop type-III: one loop

Loop suppressed

Cem Murat Ayber, Carleton University ICHEP 2024, Prague, 20.07.2024

$$
= v^2 \left[\mathbf{Y}^T \frac{1}{\Lambda^T \Lambda} \mathbf{Y} \right] \qquad \mathbf{Y} = \left(\mathbf{Y}_{\tilde{B}}, \mathbf{Y}_{\tilde{W}} \right) \Lambda = \begin{pmatrix} -\frac{B}{B} & \mathbf{Y}_{\tilde{W}} \\ 0 & M_{\tilde{W}} \end{pmatrix}
$$

As:
$$
\left(\epsilon^{d=6} \right)_{e\mu} = \frac{v^2}{\Lambda_M^2} \left[u_{\tilde{B}}^e u_{\tilde{B}}^\mu + u_{\tilde{W}}^e u_{\tilde{W}}^\mu \right]
$$

Independent of Dirac bi*v*o and wivo masses

By far the strongest constraints are on the $e - \mu$ element

Constraints on the Messenger Scale

Cem Murat Ayber, Carleton University 18 18 and 18 ICHEP 2024, Prague, 20.07.2024

Cem Murat Ayber, Carleton University ICHEP 2024, Prague, 20.07.2024

Outcomes of our Model

Model Spectrum

These scales are motivated by the resulting phenomenology of J. Gehrlein, **S. Ipek** and P.J. Fox, JHEP 03 (2019) 073

Two SUSY breaking sectors: two *goldstini*

 Lightest supersymmetric particle (LSP) is the gravitino: $m_{3/2} \sim \mathcal{O}(10 \text{ MeV})$

Two of the lightest neutralinos are purely bi*ν***o- and wi***ν***o-like (degenerate with charginos)**

Cheung, C., Nomura, Y. and Thaler, J. JHEP **2010**, 73 (2010)

Uneaten Goldstino with a mass $2m_{3/2}$ can be a DM candidate when $T_{\rm RH} \sim \mathcal{O}({\rm GeV})$

A. Monteux and C. S. Shin,Phys. Rev. **D92**, 035002 (2015)

Wi*ν*o as the Lightest Neutralino

Cem Murat Ayber, Carleton University 20 20 and 20 **ICHEP 2024, Prague, 20.07.2024**

Wi*ν***o Phenomenology**

$100 \text{ GeV} < M_{\tilde{W}/\chi_1^\pm} < 1.1 \text{ TeV}$ Excluded < 1.1 TeV

ATLAS collaboration, Phys. Rev. D 103 (2021) 112003

Depends on their branching fraction to different lepton flavors

Alleviates the constraints from this search

e **and** *μ* **final states are the most constraining**

free parameter for the analysis

Wi*ν***o Phenomenology**

Cem Murat Ayber, Carleton University 21 and 21 and 21 and 2024, Prague, 20.07.2024

Gravitino/Goldstino DM with low $T_{\rm RH}$

Cem Murat Ayber, Carleton University **128 12 External 22 CHEP 2024, Prague, 20.07.2024**

For the parameter region we are interested, $m_{3/2} \sim \mathcal{O}(1 \,\text{keV} - 10 \,\text{MeV})$, goldstino will overpopulate the universe, if the reheating temperature is sufficiently high, e.g. $T_\mathrm{RH}\sim \mathscr{O}(\text{TeV})$

 $m_{\zeta/\eta}$, $T_{\rm RH}\ll \tilde{m}\sim \mathcal{O}(\text{TeV})\lesssim T_{\rm MAX}$

Takeaways from our Model

- ‣ The neutrino-bino/wino mixing follows a hybrid type I+III ISS pattern and can generate non-zero masses for all three neutrinos in its most general form.
- ‣ The hierarchy between the gravitino mass and the messenger scale can explain the smallness of the neutrino masses.
- \triangleright Branching fractions to different lepton families (e, μ, τ) are determined by the observed neutrino mixing structure.
- observed dark matter abundance **In progress**
- Offers a rich LHC phenomenology **•** Next step: A comprehensive LHC analysis ‣ Light gravitino/goldstino with low reheating temperature could accommodate the

Basics: Seesaw Mechanism

Type-I

$$
M_{\nu} = \begin{pmatrix} 0 & m_D \\ m_D^T & M_N \end{pmatrix} \qquad m_{\nu} = Y_N^T \frac{1}{M_N}
$$

S.F. King, Nucl. Phys. B 908 (2016) 456 Y. Cai, T. Han, T. Li and R. Ruiz, Frontiers in Phys. 6 (2018) **Lepton number is violated**

Cem Murat Ayber, Carleton University 25 and 25 and 25 and 2024, Prague, 20.07.2024

Basics: Inverse Seesaw Mechanism

Type-I

2 SM singlets *N*, $N' \longrightarrow L(N) = +1, L(N') = -1$

\mathcal{L}_{type-I} *ISS* ⊃ $\overline{N}Y_N^T\tilde{\phi}$ \tilde{b}^{\dagger} $\ell_L + M_D \overline{N} N^{\prime c}$ $+\overline{N}'Y_N^T\tilde{\phi}^{\dagger}\mathcal{C}_L + \mu\overline{N}N^c + \mu'\overline{N}'N'^c$ - **L-violating**

pseudo-Dirac fermions Dirac mass Majorana masses

Type-III ISS is identical to type-I

Instead of 2 SM singlets, we have 2 *SU*(2)-triplet fermions

Cem Murat Ayber, Carleton University 26 and 2012 12:00 and 2024, Prague, 20.07.2024

D. Wyler and L. Wolfenstein,, Nucl. Phys. B 218 (1983) 205 R.N. Mohapatra, Phys. Rev. Lett. 56 (1986) 561 R.N. Mohapatra and J.W.F. Valle, Phys. Rev. D34 (1986) 1642

Minimal Lepton Flavor Violation!

 $M^{}_\nu =$ 0 $Y_N^T v Y_N^T v$ $Y_Nv \qquad \mu' \qquad \Lambda^T$ *Y_N'v* Λ *μ* Type-I Type-III ISS

Cem Murat Ayber, Carleton University **ICHEP 2024, Prague, 20.07.2024**

Neutrino masses are proportional to the Majorana masses

► Have gauge interactions: $\overline{\Sigma}$ ⁻Σ⁻*Z*, $\overline{\Sigma}$ ⁺Σ⁺*Z*, $\overline{\Sigma}$ ⁰Σ⁺*W*⁻, $\overline{\Sigma}$ ⁰Σ⁻*W*⁺ + h.c.

Production at − colliders and rare decays

 $m_\nu \thicksim \bigg(\:Y_{N}\hskip.03cm'\bigg)$ T_1 ¹ Λ^T $Y_N + Y_N^T$ 1 Λ Y_N') $v^2 + \mathcal{O}$ (Y_N^T *N* 1 Λ *μ* 1 Δ^T Y_Nv^2

Basics: Type-I and Type-III ISS

Type III models offer a richer phenomenology

-
- **‣** Charged leptons mix with new states: Σ+*^c* − *l*

Electroweak sector

$$
M_N \simeq \begin{pmatrix} M_{\tilde{B}} & 0 & g_Y v/2 & 0 \\ 0 & M_{\tilde{W}} & -g_2 v/\sqrt{2} & 0 \\ \frac{\lambda_{\tilde{B}}^u v}{2} & -\frac{\lambda_u^u v}{2} & \mu_u & 0 \\ 0 & 0 & 0 & \mu_d \end{pmatrix} \qquad M_C \simeq \begin{pmatrix} M_{\tilde{W}} & -g_2 v/\sqrt{2} & 0 \\ 0 & \mu_u & 0 \\ 0 & 0 & \mu_d \end{pmatrix}
$$

\nIn the basis $(\tilde{B}, \tilde{W}^0, \tilde{R}_u^0, \tilde{R}_d^0) \times (S, T^0, \tilde{h}_u^0, \tilde{h}_d^0)$ In the basis $(\tilde{W}^+, \tilde{R}_u^+, \tilde{R}_d^+) \times (\Phi_T^-, \tilde{h}_u^-, \tilde{h}_d^-)$
\nWe further assume $\lambda_{\tilde{B}, \tilde{W}}^u = 0$ such that bino, wino and Higgsinos do not mix

Cem Murat Ayber, Carleton University 28 and 28 and 128 and 128 and 128 and 128 and 128 and 128 and 129 and 129

After EWSB, S and T participate in both neutralino and chargino mixing due to the presence of $U(1)_R$ symmetry.

The relevant part of the superpotential:

$$
\mathcal{W} = \mu_u H_u R_u + \mu_d H_d R_d + \Phi_S \left(\lambda_{\tilde{B}}^u H_u R_u + \lambda_{\tilde{B}}^d H_d R_d \right) + \Phi_T \left(\lambda_{\tilde{W}}^u H_u R_u + \lambda_{\tilde{W}}^d H_d R_d \right)
$$

In the large $\tan\beta \equiv v_u/v_d\;$ limit, ($v_d\rightarrow 0$), the mixing matrices in neutral and charged sectors:

G.D. Kribs, A. Martin and T.S. Roy, JHEP 01 (2009) 023

Comparison to the Pure Bi*ν*o Case

When $m_S = m_T$, this scenario is equivalent to the pure bivo case^{*}

* P. Coloma and **S. Ipek**, Phys. Rev. Lett. 117 (2016) 111803

$$
V_{i2}
$$

$$
\mathbf{u}_{\tilde{B}} = \begin{pmatrix} 0.35 \\ 0.85 \\ 0.39 \end{pmatrix} \text{ and } \mathbf{v}_{S} = \begin{pmatrix} -0.06 \\ 0.44 \\ 0.89 \end{pmatrix}
$$

$$
u_{\tilde{B}}^i = \frac{1}{\sqrt{2}} \left[\sqrt{1 + \lambda_{NO}} U_{i3} + \sqrt{1 - \lambda_{NO}} U_{i2} \right]
$$

$$
u_{\tilde{W}}^i \Rightarrow v_S^i = \frac{1}{\sqrt{2}} \left[\sqrt{1 + \lambda_{NO}} U_{i3} - \sqrt{1 - \lambda_{NO}} U_{i2} \right]
$$

Using the central values of the PMNS mixing parameters:

hybrid bivolwivo case
$$
m_{2,3} = \frac{(m_S + m_T)v^2}{\sqrt{2\Lambda_M^2}} \sqrt{1 - 2\beta \pm \sqrt{1 - 4\beta}}
$$
 with $\beta \approx 0.13$
pure bivo case* $m_{2,3} = \frac{m_{3/2}v^2}{\Lambda_M^2} (1 \pm \rho)$ with $\rho \approx 0.7$

Cem Murat Ayber, Carleton University **1988 and 2012 CEM 2024, Prague, 20.07.2024**

intrinsic dependence to the gravitino mass

Experimental Bounds

 $< 6.2 \times 10^{-16}$

 $R_{\mu e}$ future

$$
Br(\mu \to e\gamma)\Big|_{\text{future}} \lesssim 10^{-14}
$$

MEG II Collaboration, PoS NuFact2021 (2022) 120

$$
Br(\mu \to e\gamma)\Big|_{\text{now}} < 4.2 \times 10^{-13} \qquad R_{\mu e}\Big|_{\text{now}} < 7 \times 10^{-13} \qquad Br(\mu \to eee) < 1.0 \times 10^{-12}
$$

MEG Collaboration, Eur. Phys. J. C 76 (2016) 8, 434 SINDRUM II Collaboration, Eur. Phys. J. C 47 (2006) 337 SINDRUM collaboration, Nucl. Phys. B 299 (1988) 1

Mu2e Collaboration. Universe 2023, 9, 54

strongest constraint

Cem Murat Ayber, Carleton University **ICHEP 2024, Prague, 20.07.2024**

Combined Constraints The off-diagonal constraints in Eq. (81) result from the experimental bounds existing on the radiative processes µ → eγ, τ → eγ and τ → µγ, while the diagonal ones come T_{max} are comparable to the stemming from the stemming

$\frac{1}{100}$ By far the strongest constraints are on the $\ell - u$ e electromagnetic radiative corrections [22], as their inclusion would correspond to a

 $\left(e^{d=6}\right)$)*eμ* = Λ2

$$
\frac{v^2}{2}|c^{d=6}|_{\alpha\beta} = \frac{v^2}{2}|Y_N^{\dagger}\frac{1}{|M_N|^2}Y_N|_{\alpha\beta} \lesssim \left(\underbrace{\frac{10^{-2}}{1.0 \cdot 10^{-5}} \underbrace{\frac{7.0 \cdot 10^{-5}}{10^{-2}}}_{1.0 \cdot 10^{-2}} \underbrace{1.0 \cdot 10^{-2}}_{1.0 \cdot 10^{-2}}\right)^{1.6 \cdot 10^{-2}}
$$
\nStronger than type-I

\ndue to tree level FCNC

\n
$$
\frac{v^2}{2}|c^{d=6}|_{\alpha\beta} = \frac{v^2}{2}|Y_{\Sigma}^{\dagger}\frac{1}{M_{\Sigma}^{\dagger}}\frac{1}{M_{\Sigma}}Y_{\Sigma}|_{\alpha\beta} \lesssim \left(\underbrace{\frac{3 \cdot 10^{-3}}{1.1 \cdot 10^{-6}} \underbrace{\frac{1.1 \cdot 10^{-6}}{4 \cdot 10^{-3}}}_{< 1.2 \cdot 10^{-3}} < 1.2 \cdot 10^{-3}} \right)^{1.2 \cdot 10^{-3}}_{< 1.2 \cdot 10^{-3}} \alpha, \beta = e, \mu, \tau
$$

$$
\left(e^{d=6}\right)_{e\mu} = \frac{v^2}{\Lambda_M^2} \left| u^e_{\tilde{B}} u^\mu_{\tilde{B}} + u^e_{\tilde{W}} u^\mu_{\tilde{W}} \right|
$$

Type-III

$$
\frac{v^2}{2} |c^{d=6}|_{\alpha\beta} = \frac{v^2}{2} |Y_N^{\dagger} \frac{1}{|M_N|^2} Y_N|_{\alpha\beta} \lesssim \left(\frac{10^{-2}}{1.0 \cdot 10^{-3}} \frac{\sqrt{1.0 \cdot 10^{-5}}}{10^{-2}} \frac{1.0 \cdot 10^{-2}}{1.0 \cdot 10^{-2}} \right)
$$

\n**Problem**
\n**Problem**
\n**Example**
\n**Example**

MEG II Collaboration, PoS NuFact2021 (2022) 120 MEG Collaboration, Eur. Phys. J. C 76 (2016) 8, 434

 \overline{C} $\frac{1}{3}$ As for direct production and detection, alike to the case of the generic type-II Seesaw Mu2e Collaboration. Universe 2023, 9, 54 SINDRUM II Collaboration, Eur. Phys. J. C 47 (2006) 337

Cem Murat Ayber, Carleton University **ICHEP 2024, Prague, 20.07.2024** idial Ayber, Garieton University and the triplet results in gauge production from \blacksquare

A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, Phys. Rev. D 78 (2008) 033007 A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, JHEP 12 (2007) 061

By far the strongest constraints are on the $e - \mu$ element

SINDRUM collaboration, Nucl. Phys. B 299 (1988) 1

 \widetilde{B}

If kinematically allowed $\tilde{B} \rightarrow \tilde{G}\gamma$

Bino Decays

Cem Murat Ayber, Carleton University **ICHEP 2024, Prague, 20.07.2024**

$$
M_{\tilde{B}} \sim \frac{M_{\tilde{B}}}{\Lambda_M^2} \sim 0.5 \text{ MeV}
$$

Wino Decays

Cem Murat Ayber, Carleton University **1988 and 1999 and 12 an**

Chargino Decays

 $\widetilde{\chi_1}^{\pm}$

Cem Murat Ayber, Carleton University **1988 and 1999** 34 **ICHEP 2024, Prague, 20.07.2024**

W[±] B" *W[±]* $\widetilde{\chi_1}^{\pm}$ $\overline{\nu}$ *h* ℓ^{\pm} $\widetilde{\chi}_1^{\pm} \to h \ell^{\pm}$ $\widetilde{\chi}$ $\widetilde{\chi}^{\pm}_1 \rightarrow W^{\pm} \nu$ $\widetilde{\chi}^{\pm}_1 \to W^{\pm} \widetilde{B}$ [∼] ($y_{\tilde{W}}v$ $\left(\frac{W}{\tilde{M}}\right)^{N}$ \sim v^2 Λ_M^2 $\sim 10^{-7}$

If kinematically allowed