Impact of mixed scattering processes on leptogenesis within hybrid seesaw framework

Tirtha Sankar Ray IIT Kharagpur, India in collaboration with: Rohan Pramanick and Arunansu Sil, PRD 109 (2024) 11,115011; arXiv: 2401.12189

ICHEP 2024, Prague

Hybrid Seesaw Models

Remaining agnostic to the motivation for hybrid seesaw models
 Generic feature of lepton number asymmetry in degenerate/quasi degenerate hybrid seesaw framework
 Prototype example : Type I + Type II

Regimes of Leptogenesis in generic Hybrid Seesaw Models

The Washout Regime

 The asymmetry created by the heavier seesaw state gets washed out
 The present day asymmetry is dominantly created by the lighter state

The N₂ Regime

 The primordial asymmetry of the heavier state survives flavoured strong washout.
 The present day asymmetry is dominantly created by the heavier state

The Hybrid Regime

Both states that are relatively degenerate contribute to the asymmetry.
The present day asymmetry is created by a combined effect of all the seesaw states.

Mixed Processes in quasi degenerate Type I + Type II Models

As the seesaw scales come close to each other, the often neglected mixed scattering topologies involving both the right handed neutrino and the scalar triplet may become important in the evolution of the lepton number asymmetry.

 $s(z)H(z)zrac{dY_{\delta(B-L)}}{dz}=-\left| \left(rac{Y_N}{Y_N^{
m eq}}-1
ight) \left(\sqrt[N-L]{r}+\sqrt[N-L]{r}+\sqrt{r}
ight)
ight|$ ϵ_N :Interference $-\left[rac{1}{2}\left(rac{Y_{\Sigma\Delta}}{Y_{\Sigma\Delta}^{
m eq}}-1
ight)\left(\left.rac{1}{\Delta}
ight.
ight$ ϵ_{Δ} :Interference $+\frac{Y_{\delta L}}{Y_L^{\text{eq}}} \left| \gamma \begin{pmatrix} N - L \\ H \\ Q - L \end{pmatrix} + \gamma \begin{pmatrix} N - L \\ H \\ \overline{I_n} - Q \end{pmatrix} - \frac{Y_N}{Y_N^{\text{eq}}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{Y_N^{\text{eq}}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{Y_N^{\text{eq}}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} \cdot \gamma \begin{pmatrix} N \\ \overline{Y_N} \end{pmatrix} - \frac{Y_N}{\overline{Y_N}} - \frac{Y_N}{\overline{Y_N}}$ $+ \left(2 \frac{Y_N}{Y_N^{\rm eq}} \frac{Y_{\delta \Delta}}{Y_{\Sigma \Delta}^{\rm eq}} + \frac{Y_{\delta L}}{Y_L^{\rm eq}} - \frac{Y_{\delta H}}{Y_H^{\rm eq}} \right) \cdot \gamma \left(\right.$ $+ \left(2 \frac{Y_{\delta \Delta}}{Y_{\Sigma \Delta}^{\rm eq}} - \frac{Y_{\delta H}}{Y_{H}^{\rm eq}} + \frac{Y_{N}}{Y_{N}^{\rm eq}} \frac{Y_{\delta L}}{Y_{L}^{\rm eq}} \right) \cdot \gamma \left(\right.$ $Y_N | Y_{\delta H} \rangle$ $Y_{\delta \Delta}$ $Y_{\delta L}$ $\overline{Y_L^{\mathrm{eq}}}$ $\overline{Y_N^{
m eq}} \, \overline{Y_H^{
m eq}}$ $Y^{
m eq}_{\Sigma\Delta}$

Representative Boltzmann Equation for the Hybrid Framework

$$-\frac{I}{I} \left(\frac{I}{\Delta} \right) - 2 \left(\frac{Y_{\delta L}}{Y_L^{eq}} + \frac{Y_{\delta H}}{Y_H^{eq}} \right) \right] \cdot \gamma \left(N - \left(\frac{I}{I} \right) \right)$$

$$= H_{\overline{X}} = L_{L} \left(\frac{Y_{\delta \Delta}}{Y_{\Sigma \Delta}^{eq}} + \frac{Y_{\delta L}}{Y_{\Sigma \Delta}^{eq}} \right) \left] \cdot \gamma \left(\Delta = \frac{\overline{L} + H}{L + H} \right)$$

Result: Benchmark Point

True Hybrid Scenario: the deviations range from 30 - 100% Thermal correction can induce deviations of around 10%

Evolution of Baryon asymmetry

Pramanick, TSR, Sil PRD 109 (2024) 11,115011

Degeneracy parame

$$ext{eter} \ \mathcal{D} \equiv rac{r-1}{r+1} = rac{M_\Delta - M_N}{M_\Delta + M_N}$$

Degeneracy parameter and range where mixed processes are important Pramanick, TSR, Sil PRD 109 (2024) 11,115011

Conclusion

 For hybrid/multi seesaw scenarios, as the seesaw scales approach each other, the *mixed scattering* processes become increasingly important

◆ Degeneracy test: a degeneracy parameter D ≤ |0.25| with $\epsilon_r = \epsilon_N / \epsilon_\Delta \sim O(1)$ signifies approximations with lightest states cannot be trusted and a full analysis with *mixed scattering* processes is in order!

Thank You

Backup Slide

Contribution of N/Δ in ν -mass

An order of magnitude deviation is now obtained by tuning $\epsilon_r = \epsilon_N / \epsilon_\Delta \gg 1$ Pramanick, TSR, Sil PRD 109 (2024) 11,115011

Evolution of Baryon asymmetry

