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Neutrino flavor oscillation, a 
crucial phenomenon in particle 
physics, explores the interplay 
between flavor and mass 
eigenstates, revealing insights 
beyond the standard model. 
Probabilistic measures 
traditionally study these 
transitions, while the quantum 
features of neutrinos, such as 
entanglement, open avenues 
for quantum information tasks.
Quantum complexity, an 
evolving field, finds application 
in understanding neutrino 
oscillations, particularly 
through quantum spread 
complexity, offering insights 
into charge-parity symmetry 
violations.  Our results suggest 
that complexity favors the 
maximum violation of charge-
parity, which is consistent with 
recent experimental data. This 
approach enhances our grasp 
of neutrino behavior, 
connecting quantum 
information theory with 
particle physics.

2-Flavor Case: 2 initial states-   ۧ|𝜈𝑒(0) = 1
0

, ۧ|𝜈μ(0) = 0
1

                             
                            Krylov states ≡ Flavor states
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ቐ
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1
} = ۧ{|𝜈𝑒 , ۧ|𝜈μ } 𝑓𝑜𝑟 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝜈𝑒

ۧ{|𝐾1 = 0
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, ۧ|𝐾1 = 1
0

} = { ۧ|𝜈μ , ۧ|𝜈𝑒 } 𝑓𝑜𝑟 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝜈μ

→   ꭓ 𝑒 = 𝑃𝑒𝜇 
,  ꭓ μ = 𝑃𝜇𝑒          Complexity contains same     

           information as probabilities. 

3-Flavor case: 

 3 initial states – ۧ|𝜈𝑒(0) =
1
0
0

, ۧ|𝜈μ(0) =
0
1
0

, ۧ|𝜈𝜏(0) =
0
0
1

→ Krylov states ≠ Flavor states

→ ꭓ 𝑒, ꭓ μ, ꭓ 𝜏 have cross terms along with probabilities, and
      hence, contain more information than the probabilities [9].

▪ In the T2K and NOvA experimental setups, where only 𝜈μ-beams are 
produced, the only relevant complexity is ꭓ μ.

▪ For both the T2K and NOvA, ꭓ μ is maximized at 𝛿 ≈ −1.5 radian at 
the relevant experimental energies. The T2K best-fit value of         
𝛿 = −2.14−0.69

+0.90 radian is consistent with this expectation.
▪ The NOvA best-fit, is at 𝛿 ≈ 2.58 radian which is far away from the 

maximum ꭓ μ in the lower-half plane of 𝛿 but is still within a region 
of high ꭓ μ value in the upper-half plane of 𝛿.

▪  P𝜇e , the only oscillation probability accessible to the T2K and NOvA 
setups, becomes maximum at 𝛿 ≈ −1.5 radian and is compatible 
with T2K best-fit but in odd with the NOvA best-fit.

▪ Complexity provides correct prediction for 𝛿 in experimental setups.

▪ Flavor states are superposition of mass eigenstates                            
 

▪ Time evolution of the flavor states is given by 𝑖
𝜕

𝜕𝑡
ۧ|𝜈α(𝑡) = 𝐻𝑓 ۧ|𝜈α(𝑡)

      Flavor Hamiltonian  𝐻𝑓 = 𝑈𝐻𝑚𝑈−1 ;   Mass Hamiltonian 𝐻𝑚 = 𝑑𝑖𝑎𝑔(𝐸𝑖)

▪ Time-evolved states  ۧ|𝜈α(𝑡) = 𝑒−𝑖𝐻𝑓𝑡 ۧ|𝜈α(0)   for an initial flavor

▪ 2-Flavor Scenario:    𝐻𝑚 =
𝐸1 0
0 𝐸2

 ; 𝑈 =
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃
   (mixing matrix)     

Osc. Probability   Pαβ = 1 − Pαα = 𝑠𝑖𝑛22𝜃 𝑠𝑖𝑛2(
∆𝑚21

2 𝐿

4𝐸
)  ;  E2-E1 ≈ ∆𝑚21

2 /2E

 3-Flavor Scenario:  

𝑈 =
𝑐12𝑐13 𝑠12𝑐13 𝑠13𝑒−𝑖δ

−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒𝑖δ 𝑐12𝑐23 − 𝑠12𝑠23𝑠13𝑒𝑖δ 𝑠23𝑐13

𝑠13𝑠23 − 𝑐12𝑐23𝑠13𝑒𝑖δ −𝑐12𝑠23 − 𝑠12𝑐23𝑠13𝑒𝑖δ 𝑐23𝑐13

We examined the spread complexity of neutrino states in 2- and 3-flavor 
oscillation scenarios:
▪ In 2-flavor scenario, complexity and transition probabilities yield 

equivalent information. In 3-flavor oscillation, complexity contains 
additional information regarding open issues related to neutrinos, 
compared to the total oscillation probability. 

▪ Remarkably, complexity is maximized for a value of the phase angle 
for which CP is also maximally violated. T2K data also favors this 
phase angle, which is obtained in terms of flavor transition.

Quantum spread complexity emerges as a potent and novel quantity for 
investigating neutrino oscillations, successfully reproducing existing 
results, also demonstrating the potential to serve as a theoretical tool 
for predicting new outcomes in future experiments.

▪ Quantum computational complexity → Estimates the difficulty of constructing 
quantum states from elementary operations.

▪ It can also serve to study Information processing inside black holes.
▪ Extends the connection between geometry and information → Growth of 

complexity ≡ growth of black hole interiors [1].
▪ The highest rate of complexity growth has been observed for de Sitter space, 

most popular model for inflation [2].
▪ What characteristics complexity shows in other natural processes of evolution?
▪ Neutrinos have shown features such as entanglement and nonlocal 

correlations [3,4].
▪ How complex is an evolution of neutrino system and if complexity can also 

probe any open issue in the neutrino sector.
▪ Whether this maximization of complexity occurs in neutrino oscillations?
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Spread Complexity
▪ Complexity: For a system [5,6], 

  𝑈1𝑈2𝑈3𝑈2 ۧ|𝜑(𝑠) = 𝑈3𝑈1𝑈2𝑈1 𝑈1
3 ۧ𝑈2|𝜑(𝑠)

    Complexity = Min number of unitaries = 4

▪ Spread Complexity: spread of the target state ۧ|ψ(𝑡)  in the 
Hilbert space relative to the reference state ۧ|ψ(0)  through 
unitary transformations, and the spread minimized over all 
possible bases [7,8].

▪ General time evolution of a system with Hamiltonian 

       ۧ|ψ(𝑡) = σ𝑛=0
∞ −𝑖𝑡 𝑛

𝑛!
𝐻𝑛 ۧ|ψ(0) = σ𝑛=0

∞ −𝑖𝑡 𝑛

𝑛!
ۧ|ψ𝑛

▪ Krylov basis: Gram-Schmidt procedure on                            
gives ordered-orthonormal basis,                                            
that minimizes the Cost Fun:

 ꭓ = σ𝑛=0
∞ 𝑛| 𝐾𝑛 𝜓 𝑡 |2

Cost fun quantifies complexity in the state evolution [7].                       

Figure 1. ꭓ μ mimicking  1- P𝜇𝜇 and containing Information on CP-phase.          
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Figure 2. ꭓ μ containing Information on mass ordering & θ23 octant.          
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