Dynamical Scoto-seesaw Mechanism in Gauged B-L model

Soumya Sadhukhan

ICHEP, 2024

RK Mission Residential College (Autonomous) & Vivekananda Centre for Research, Kolkata, India

July 19, 2024

July 19, 2024 1 / 17

・ロト ・ 一下・ ・ ヨト・

- This talk is based on our work:
 - $\bullet~\mbox{Title:}~\mbox{Dynamical Scoto Seesaw Mechanism in a gauged}~\mbox{B}-\mbox{L}$ symmetry
 - Authors: Julio Leite, Soumya Sadhukhan, Jose W. F. Valle arXiv:1307.04840, Physical Review D, Volume 109-Issue 3, 2024

・ロト ・ 戸 ・ ・ ヨ ・ ・

Background: Neutrino Physics

- Experiments establish the SM to be the complete theory: Higgs boson is found.
- Still there are issues not addressed in the SM:
 - Smallness of the neutrino mass New physics is required in order to account for the existence of neutrino masses McDonald,Kajita
 - Pattern of Neutrino Oscillation: Texture of neutrino mass and mixing The global best fit neutrino oscillation related constraints obtained from the neutrino oscillation experiments with $\pm 1\sigma$:

$$\begin{split} \sin^2\theta_{12} &= 0.304^{+0.012}_{-0.012}, \sin^2\theta_{23} = 0.537^{+0.016}_{-0.020}, \sin^2\theta_{13} = 0.0022^{+0.00062}_{-0.00063}, \\ \Delta m^2_{21} &= 7.42^{+0.20}_{-0.21} \times 10^{-5} \text{ eV}^2, \\ \Delta m^2_{31} &= 2.517^{+0.026}_{-0.028} \times 10^{-3} \text{ eV}^2, \\ \delta_{\rm CP} &= 197^{\circ}^{+27^{\circ}}_{-24^{\circ}} \end{split}$$

• Dark matter candidate

weakly interacting massive particle (WIMP) dark matter candidates constitute a paradigm for explaining cold dark matter.

• Gauge and fermion mass hieararchy problem, not enough CP violation etc

Neutrino Mass generation: Seesaw and Scotogenic

- Neutrino Mass generation Mechanism: Seesaw Mechanism
 - Type-I Seesaw
 - Type-II Seesaw
 - Inverse Seesaw

Valle, 1982

(日) (四) (三) (三)

• Scotogenic means neutrino mass generation through loops: alternative to Seesaw mechanism.

• A particularly interesting possibility is provided by the so-called scotogenic approach in which WIMP dark matter mediates neutrino mass generation.

Ma 2013, Hirsch 2016

- In the simplest schemes, all neutrino masses arise at the one-loop level, with a common overall scale, modulated only by Yukawa couplings.
- Rather than invoking these paradigms separately, here we suggest a dynamical mechanism to realize naturally the scoto-seesaw scenario. Rojas, Mandal

We plan to do this in a model with gauged $U(1)_{ m B-L}$

- For the $U(1)_{B-L}$ symmetry to be gauged, it has to be anomaly free. Simplest gauged version cancels the anomalies: adds three lepton singlets $\nu_{iR} \sim -1$.
- A ν_{iR} -mediated (type-I) seesaw mechanism can be realized: Majorana mass generation possible, breaks B L by two units.
- In standard construction the seesaw-mediating ν_{iR} carry identical charges: all neutrino masses become proportional to a single energy scale, unable to address the observed hierarchy in $\Delta m^2_{sol}/\Delta m^2_{atm}$.
- An alternative anomaly-free $U(1)_{B-L}$ proposal: three neutral fermions with B-L charges

$$(f_{1R}, f_{2R}, N_R) \sim (-4, -4, 5)$$

Montero '07, Ma '14

ヘロト 人間ト 人造ト 人造ト

• Two sets of Leptons with different charges \rightarrow Two types of interactions \rightarrow Two different neutrino mass generation mechanism...

Modified gauged $U(1)_{\rm B-L}$

• Even after spontaneous breaking of U(1) through the VEVs a residual symmetry emerges:

$$M_P = (-1)^{3(B-L)+2s}.$$

• 3 right handed neutrinos are introduced. Leptons along with leptonic dark sector fields with their symmetry transformation properties (i = 1, 2, 3 and a = 1, 2):

	Fields	$SU(2)_L \otimes U(1)_Y$	$U(1)_{B-L} o M_P$
Leptons	L _{iL}	(2, -1/2)	-1 ightarrow +1
	e _{iR}	(1,-1)	-1 ightarrow +1
	N _R	(1, 0)	5 ightarrow +1
Dark fermion	f _{aR}	(1,0)	-4 ightarrow -1

• Fermionic part of the Lagrangian:

$$-\mathcal{L}_{Y} = Y_{ij}^{H}\overline{L}_{iL}He_{jR} + Y_{i}^{\Phi}\overline{L}_{iL}\tilde{\Phi}N_{R} + Y_{ia}^{\eta}\overline{L}_{iL}\tilde{\eta}f_{aR} + \frac{Y^{N}}{2}\varphi_{1}^{*}\overline{(N_{R})^{c}}N_{R} + \frac{Y_{a}^{f}}{2}\varphi_{2}\overline{(f_{aR})^{c}}f_{aR} + h.c..$$

(日)

Extended Scalar sector

	Fields	$SU(2)_L \otimes U(1)_Y$	$U(1)_{B-L} o M_P$
Scalars	H	(2,1/2)	0 ightarrow +1
	Φ	(2, 1/2)	6 ightarrow +1
	φ_1	(1, 0)	10 ightarrow +1
	φ_2	(1, 0)	8 ightarrow +1
	φ_3	(1,0)	2 ightarrow +1
Dark Scalars	η	(2,1/2)	-3 ightarrow -1
	σ	(1,0)	9 ightarrow -1

• For convenience, the most general renormalisable scalar potential is separated in two parts $V=V_1+V_2$, where

$$V_{1} = \sum_{i=1}^{3} \left[\mu_{\mathcal{D}_{i}}^{2} \mathcal{D}_{i}^{\dagger} \mathcal{D}_{i} + \lambda_{\mathcal{D}_{i}} (\mathcal{D}_{i}^{\dagger} \mathcal{D}_{i})^{2} \right] + \sum_{i,j}^{i < j} \left[\lambda_{\mathcal{D}_{i} \mathcal{D}_{j}} (\mathcal{D}_{i}^{\dagger} \mathcal{D}_{i}) (\mathcal{D}_{j}^{\dagger} \mathcal{D}_{j}) + \lambda_{\mathcal{D}_{i} \mathcal{D}_{j}}^{\dagger} (\mathcal{D}_{i}^{\dagger} \mathcal{D}_{j}) (\mathcal{D}_{j}^{\dagger} \mathcal{D}_{i}) \right]$$
(1)
$$+ \sum_{k=1}^{4} \left[\mu_{\mathcal{S}_{k}}^{2} \mathcal{S}_{k}^{\dagger} \mathcal{S}_{k} + \lambda_{\mathcal{S}_{k}} (\mathcal{S}_{k}^{\dagger} \mathcal{S}_{k})^{2} \right] + \sum_{k,l}^{k < l} \lambda_{\mathcal{S}_{k} \mathcal{S}_{l}} (\mathcal{S}_{k}^{\dagger} \mathcal{S}_{k}) (\mathcal{S}_{l}^{\dagger} \mathcal{S}_{l}) + \sum_{i,k} \lambda_{\mathcal{D}_{i} \mathcal{S}_{k}} (\mathcal{D}_{i}^{\dagger} \mathcal{D}_{i}) (\mathcal{S}_{k}^{\dagger} \mathcal{S}_{k})$$
$$- V_{2} = \frac{\mu_{1}}{\sqrt{2}} \Phi^{\dagger} \eta \sigma + \frac{\mu_{2}}{\sqrt{2}} \varphi_{1}^{*} \varphi_{2} \varphi_{3} + \lambda_{1} \varphi_{1} \varphi_{2} \sigma^{*2} + \lambda_{2} \Phi^{\dagger} H \varphi_{2} \varphi_{3}^{*} + \text{h.c.}$$
(2)

Soumya (DU)

(日)

Scoto-Seesaw Framework

 \bullet With μ_Φ much larger than the other mass scales in the model, the tadpole equation leads to induced VEV

$$v_{\Phi} \simeq rac{\lambda_2 v_H v_{arphi_2} v_{arphi_3}}{2 \mu_{\Phi}^2} \equiv v_H \epsilon \ll v_H.$$

• Seesaw and scotogenic contributions to neutrino masses:

• The M_P even fields complete the seesaw contribution, whereas the dark sector $(M_P$ -odd) fields complete the scotogenic diagram.

< □ > < 同 >

Neutrino Seesaw Scale

• Neutrino Mass Matrix

• The tree-level contribution, in the basis $(\nu_{iL}, (N_R)^c)$, leads to the following mass matrix

$$M^{\nu,N} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 & Y_1^{\Phi} v_{\Phi} \\ 0 & 0 & 0 & Y_2^{\Phi} v_{\Phi} \\ 0 & 0 & 0 & Y_3^{\Phi} v_{\Phi} \\ Y_1^{\Phi} v_{\Phi} & Y_2^{\Phi} v_{\Phi} & Y_3^{\Phi} v_{\Phi} & Y^N v_{\varphi_1} \end{pmatrix}$$

- Solar Neutrino Mass scale
 - Matrix is diagonalized and limiting case is taken: $v_{\varphi_i} \gg v_H \gg v_{\Phi}$.
 - Here $m_N \simeq v_{\varphi_1} Y^N / \sqrt{2}$ is the mass of N_R with $v_{\Phi} = v_H \epsilon$ being the small induced VEV.
 - The light neutrino mass matrix has only one non-vanishing eigenvalue

$$\sim -rac{v_{\Phi}^2}{m_N}\sum_i (Y_i^{\Phi})^2$$

・ロト ・日 ・ ・ ヨ ・ ・

Neutrino Scotogenic Scale

• Other two neutrinos get their masses through one loop scotogenic mechanism, with contributions,

$$\begin{split} \mathcal{M}_{ij}^{\nu(\mathrm{SC})} &= \sum_{c=1}^{2} Y_{ic}^{\eta} \mathcal{M}_{c} Y_{jc}^{\eta}, \quad \text{with} \\ \mathcal{M}_{c} &= \frac{m_{f_{c}}}{16\pi^{2}} [\frac{\cos^{2}\theta_{s}m_{s_{1}}^{2}}{m_{s_{1}}^{2} - m_{f_{c}}^{2}} \ln \frac{m_{s_{1}}^{2}}{m_{f_{c}}^{2}} - \frac{\cos^{2}\theta_{s}m_{a_{1}}^{2}}{m_{a_{1}}^{2} - m_{f_{c}}^{2}} \ln \frac{m_{a_{1}}^{2}}{m_{f_{c}}^{2}} \\ &+ \frac{\sin^{2}\theta_{s}m_{s_{2}}^{2}}{m_{s_{2}}^{2} - m_{f_{c}}^{2}} \ln \frac{m_{s_{2}}^{2}}{m_{a_{2}}^{2} - m_{f_{c}}^{2}} \ln \frac{m_{a_{2}}^{2}}{m_{a_{2}}^{2} - m_{f_{c}}^{2}} \ln \frac{m_{a_{2}}^{2}}{m_{f_{c}}^{2}}], \end{split}$$

where $m_{f_c} = v_{\varphi_2} Y_c^f / \sqrt{2}$ are the dark fermion masses.

• With either $\lambda_1 \rightarrow 0$ or $\mu_1 \rightarrow 0$, the loop-generated masses vanish.

• With $\lambda_1 \rightarrow 0$, $m_{s_i} \rightarrow m_{a_i}$, with $\cos^2 \theta_s \rightarrow \cos^2 \theta_a$ and $\sin^2 \theta_s \rightarrow \sin^2 \theta_a$, leading to a cancellation between the first and the second, as well as the third and the fourth terms.

• With $\mu_1 \rightarrow 0$, $\theta_s, \theta_a \rightarrow 0$ so that only the first and the second terms survive; eventually to cancel out as $m_{s_1} \rightarrow m_{a_1}$, in this limit.

Neutrino Mass hierarchy: Explained

• Yukawa couplings controlling the cLFV processes are also involved in neutrino mass amd mixing: input benchmarks are chosen satisfying neutrino oscillation data.

• Neutrino mass hierarchies plotted with varying the lightest neutrino mass, m_1 , for normal ordering.

• For the lightest neutrino mass, m_1 , the upper limit comes from: a. taking the bound on the sum of the neutrino masses from cosmology: $\sum_i m_i < 0.12 \text{ eV}$ coupled with b. the normal ordering assumption.

Soumya (DU)

Charged Lepton Flavor Violation

• Leading contributions to the charged lepton flavour violating (cLFV) decays $e_i \rightarrow e_j \gamma$ and $e_i \rightarrow e_j G$ ($\mu \rightarrow e \gamma / \mu \rightarrow e G$)

- Experimental cLFV Constraints:
 - $\mu \to e\gamma$: MEG-2 puts strongest constraint on the LFV process BR($\mu \to e\gamma$) < 4.2 × 10⁻¹³. 1510.04284 Future sensitivity from MEG-2: BR($\mu \to e\gamma$) < 6 × 10⁻¹⁴.
 - $\mu \rightarrow eG$: BR $(\mu \rightarrow eG) \lesssim 10^{-5}$ from TWIST experiment. BR $(\mu \rightarrow eG) \lesssim 10^{-8}$ from COMET experiment.
 - Other LFV decays like $\tau(\mu) \rightarrow 3e$, $\mu \rightarrow e$ conversion are possible, but with weaker bounds.

・ロト ・ 一下・ ・ ヨト ・ ヨ

LFV Constraints

• Case-I: the induced VEV v_{Φ} varies with varying $v_{\varphi} \equiv v_{\varphi_{1,2,3}}$, which is the B - L-breaking scale. $m_L(\text{GeV})$

• In case-II, v_{Φ} is kept constant while the symmetry breaking scale v_{ω} varies. m_{L} (GeV)

Soumya (DU)

Collider Outlook

• Here both the N and Z' can be in the TeV-scale: better collider prospect than standard scoto-seesaw mechanism with either very heavy N or tiny doublet-singlet $\nu - N$ mixing.

• Presence of the Z': a Drell-Yan pair-production portal for the heavy neutrino (moreover with an enhanced gauge charge here: 5) which decays into potentially verifiable signals.

• In our model, we have many decay modes of $Z' \rightarrow S_i A_j$ and $Z' \rightarrow S_i Z$, where S_i and A_j are the CP-even and CP-odd scalars,

<ロト < 同ト < 三ト <

• Scalar Dark Matter:

- The neutral components of the singlet S_{σ} , A_{σ} and doublet S_{η} , A_{η} mix so as to produce the CP-even (s_1, s_2) and CP-odd (a_1, a_2) DM candidates, respectively.
- Compared to simplest scoto-seesaw, there are other s-channel resonant and t-channel contributions to scalar DM annihilation here, which can enhance the annihilation cross section, reducing the relic.

• Fermionic Dark Matter

- These dark fermions f_a have a new Z' portal to annihilate which is a contrast to the simplest non-gauged scoto-seesaw model.
- In contrast to simplest scoto-seesaw, there is a singlet φ_2 here provides mass to the dark Majorana fermions f_a , and can act as a portal of DM annihilation, creating a resonant dip in the relic density.

<ロト < 同ト < ヨト < ヨト

- We have proposed a scheme where the scoto-seesaw mechanism has a dynamical origin, associated to a gauged B L symmetry.
- "Dark" states mediate solar neutrino mass generation radiatively, while the atmospheric scale arises *a la seesaw*;
- Indeed the origin of the solar scale is *scotogenic*, its radiative nature explaining the solar-to-atmospheric scale ratio.
- Dark matter stability follows from the residual matter parity that survives the breaking of B L gauge symmetry: Rich dark matter phenomenology.
- Apart from the possibility of being tested at colliders, see Fig. ??, our scoto-seesaw model with gauged B L has sizeable charged lepton flavour violating phenomena.

(日) (四) (三) (三)

Thank You

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?