

ichep2024.org

42nd International Conference on High Energy Physics

18-24 July 2024 Prague Czech Republic

Phenomenology of Scotogenic 3-loop Neutrino Mass Models

Téssio de Melo

Universidad Viña del Mar/Millenium SAPHIR Institute

Based on J. High Energ. Phys. 03 (2023) 035 arXiv:2212.06852 [hep-ph] and J. High Energ. Phys. 05 (2024) 035 arXiv:2312.14105 [hep-ph], with A. Abada, N. Bernal, A. Cárcamo, S. Kovalenko and T. Toma

20 July 2024

Seesaw Mechanism

Weinberg Operator:

$$\mathcal{O}_W = \frac{c}{\Lambda} LLHH$$

[Weinberg, 1979]

Seesaw Mechanism

Weinberg Operator:

Seesaw Mechanism

Seesaw Mechanism

Weinberg Operator:

Radiative Seesaw Mechanism

Weinberg Operator:

$$\mathcal{O}_W = \frac{c}{\Lambda} LLHH$$

[Weinberg, 1979]

Scotogenic Model (1-loop)

Zee-Babu Model (2-loop)

[Ma, 2006]

ICHEP - 07-20-2024

[K. Babu, 1988]₆

Scotogenic Model

[Ma, 2006]

	$SU(2)_L$	$U(1)_Y$	Z_2
η	2	$\frac{1}{2}$	Ι
N_R	1	0	I

Lepton Sector

$$\mathcal{L} \supset -\frac{m_N}{2}\overline{N_R^c}N_R - y\overline{L}\eta N_R$$

Scalar Sector

$$V \supset \frac{\lambda_5}{2} \left[(\phi^{\dagger} \eta)^2 + (\eta^{\dagger} \phi)^2 \right]$$

 $m_{\nu} \simeq \frac{\lambda_5 v^2}{32\pi^2} f_{\rm loop} y^T M_N^{-1} y$

Scotogenic Model

- The scotogenic model accounts for neutrino masses and dark matter with a very simple and economic setup
- However, λ5 has to be very small if the Yukawa couplings are "natural" (or vice-versa

$$\lambda_5 \sim 5 \times 10^{-8} \left(\frac{m_{\nu}}{0.1 \text{ eV}}\right) \left(\frac{m_N}{1 \text{ TeV}}\right) \left(\frac{0.1}{y}\right)^2$$

Scotogenic Model

- The scotogenic model accounts for neutrino masses and dark matter with a very simple and economic setup
- However, λ5 has to be very small if the Yukawa couplings are "natural" (or vice-versa

$$\lambda_5 \sim 5 \times 10^{-8} \left(\frac{m_{\nu}}{0.1 \text{ eV}}\right) \left(\frac{m_N}{1 \text{ TeV}}\right) \left(\frac{0.1}{y}\right)^2$$

 This motivates us to go for higher loops. At n-loop order, neutrino masses are typically given by:

$$m_{\nu} \sim C \left(\frac{1}{16\pi^2}\right)^n \frac{v^2}{\Lambda}$$

3-loop Scotogenic Model

3-loop Scotogenic Model

3-loop Scotogenic Model

3-loop Scotogenic Model

$$\mathcal{L} \supset -\frac{m_N}{2}\overline{N_R^c}N_R - y\overline{L}\eta N_R - A\left[(\eta^{\dagger}\phi)\varphi + h.c.\right] - \lambda_{14}(\varphi\rho^3 + h.c.) - \lambda_{15}(\rho\zeta\sigma^2 + h.c.)$$

3-loop Scotogenic Model

Field	N_{R_k}	η	arphi	ρ	ζ	σ
$SU(2)_L$	1	2	1	1	1	1
$U(1)_Y$	0	$\frac{1}{2}$	0	0	0	0
U(1)'	0	3	3	-1	0	$\frac{1}{2}$
\mathbb{Z}_2	-1	-1	-1	-1	-1	1

$$m_{\nu} \simeq \frac{\lambda_{14}^2 A^2 v^2}{(16\pi^2)^3} g_{\text{loop}} y^T M^{-1} y$$

Charged Lepton Flavor Violation

 $BR(\mu \rightarrow e\gamma)$

-4×10⁻¹³

- 3 × 10⁻¹³

- 2 × 10⁻¹³

-1×10⁻¹³

10

8

Charged Lepton Flavor Violation

Charged Lepton Flavor Violation

Charged Lepton Flavor Violation

Charged Lepton Flavor Violation

19

Dark matter

- The lightest particle charged under Z2 is stable:
 dark matter candidate
- Fermion Dark Matter: NR1
 - It can only be produced via Yukawa interactions
 - It annihilates into a pair of charged leptons or active neutrinos via the η exchange

$$\sigma(N_1 N_1 \to \bar{l}_\alpha l_\alpha) \sim y_{1\alpha}{}^4 \quad \Longrightarrow \quad \Omega_{DM} \Rightarrow y \sim \mathcal{O}(1)$$

[A. Vicente, C. Yaguna, 2015]

Dark matter

- Scalar Dark Matter: the lightest neutral scalar among η0, φ, ρ and ζ
 - Gauge and scalar interactions
 - Not correlated to lepton flavor violation
- If the dominant component is ηο
 - > DM properties similar to the inert scalar DM
 - Annihilation dominated by gauge interactions
- If DM is dominated by the other components
 - Main annihilation channels into the Higgs bosons via the scalar couplings

ICHEP - 07-20-2024

[Ávila, Cottin, Díaz, 2022]

Precision EW and CDF anomaly

CDF-II measurement of the W mass

[CDF Collaboration, 2022]

$$M_W = (80.433 \pm 0.0064_{\text{stat}} \pm 0.0069_{\text{syst}}) \text{ GeV}$$

 $(M_W)_{\text{SM}} = (80.379 \pm 0.012) \text{ GeV}$

Non-SM particles provide radiative corrections to the W-boson mass

$$M_W^2 = \left(M_W^2\right)_{\rm SM} + \frac{\alpha_{\rm EM}\left(M_Z\right)\cos^2\theta_W M_Z^2}{\cos^2\theta_W - \sin^2\theta_W} \left[-\frac{S}{2} + \cos^2\theta_W T + \frac{\cos^2\theta_W - \sin^2\theta_W}{4\,\sin^2\theta_W} U\right]$$

CDF-II result can be explained by new physics that contribute to STU parameters

Precision EW and CDF anomaly

	Parameter Value	Correlation		
		S	T	U
S	0.06 ± 0.10	1.00	0.90	-0.59
T	0.11 ± 0.12		1.00	-0.85
U	0.14 ± 0.09			1.00

[C. Lu, L. Wu, Y. Wu and B. Zhu, 2022]

Precision EW and CDF anomaly

 $m_{\eta^+} = 1500 \text{ GeV} \qquad m_{\Phi_1} = 1600 \text{ GeV}$

Precision EW and CDF anomaly

 $m_{n^+} = 1500 \text{ GeV} \qquad m_{\Phi_1} = 1600 \text{ GeV}$

3-loop Scotogenic ISS Model

 Out-of-equilibrium decays of the pseudo-Dirac neutrinos NR can generate the baryon asymmetry of the universe via leptogenesis

Conclusions

- Radiative seesaw models are well motivated and testable extensions of the SM
- We discussed 2 examples of scotogenic models in which neutrinos masses are generated at the 3-loop level
- The 3-loop suppression allows the new particles to have masses in the TeV scale without fine-tuning the model parameters
- Fermionic or scalar DM can easily be accommodated; stability is ensured by the same symmetries involved in the generation of neutrino masses
- Depending on the realization, the models are capable of accounting for specific problems; here we discussed the W mass anomaly and baryogenesis
- These models lead to sizable cLFV rates which are within the sensitivity of future facilities

ICHEP - 07-20-2024

Thank you!