

collaboration

Searching for exotic modes of $2\nu\beta\beta$ with the SuperNEMO Experiment

Basics of $\beta\beta$ decays

Two-neutrino double-beta decay

2vßß
> Allowed in SM
> Measured for 11 isotopes
> Goal now precision measurements Neutrinoless double-beta decay

Most double beta experiments can measure **only** the sum of the two electrons' energies \rightarrow **best signature for** $0\nu\beta\beta$

SuperNEMO: Full $\beta\beta$ topology detection

Measurement principle

Source foil Tracker Calorimeter

Full kinematics of decay
 Individual electron energies (E₁, E₂)

> Source foil: > 82 Se (6.11 kg) > $Q_{\beta\beta} = 3 \text{ MeV}$ > Tracker:

> 2034 drift cells

See poster #871!

> Calorimeter:

712 plastic scintillators
8" and 5" PMTs

Source foil ✓
Source foil ✓
Tracker ✓
Calorimeter ✓
Shielding ∑
Data: Sep'24 – '27

Theoretical spectra of $2\nu\beta\beta$ and $0\nu\beta\beta$

Exotic modes: theory and where to look

- **Improved description of** $2\nu\beta\beta$ **spectrum shape** > Precise shape analysis can constrain $g_A^{[1]}$ > Shape parameters: ξ_{31}, ξ_{51}
- Where to look:
- > Single-electron energy spectrum

- **Decay with right-handed neutrino** > $v_R v_L \beta \beta$ > Constrains on the RH neutrino interactions $(V + A)^{[2]}$ Where to look:
- > Angular distribution

- **Decay with sterile neutrino** > $N\nu\beta\beta$ > Shape depends on $m_N^{[3]}$
- Where to look:
- > Single-electron energy and Summed energy spectra

Angle between electrons (φ)
Time of Flight

Exotic modes: what they look like

The analysis: from prediction to simulation of what can be achieved

SuperNEMO has access to **unique observables**. Thanks to the tracker-calorimeter approach, analysis can be tailored to look for each decay mode's most **significant trait!**

Observable 1 Summed 2-electron energy

Observable 2 Single-electron energy

foil their direction changes:

As electrons traverse through the bulk of source

the **decay** angle \neq the **measured** angle

Paper summarizing these effects in preparation

Multivariate Combining E and φ ?

#851

Thanks to the combination of tracking and calorimetry SNEMO expects very low background in a wide ROI, ideal for $0\nu\beta\beta$ search. The expected background rate in ROI is: $< 10^{-4}$ events per keV.kg.yr

Access to single-electron energy spectra allows SuperNEMO to study the shape of $2\nu\beta\beta$ with high precision and to see the subtle changes predicted from advanced theoretical calculations in the improved $2\nu\beta\beta$.

Contribution of $v_R v_L \beta \beta$ can best be studied via the so called **forward-backward asymmetry: The ratio of events with** $\varphi > 90^\circ$ and $\varphi < 90^\circ$.

References:

^[1] - Niţescu, O.; Dvornický, R.; Stoica, S.; Šimkovic, F.; Universe 2021, 7(5), 147
 ^[2] - Deppisch, F. F.; Graf, L.; Šimkovic, F.; Phys. Rev. Lett. 125, 171801
 ^[3] - Bolton, P. D.; Deppisch, F. F.; Graf, L.; Šimkovic, F.; Phys. Rev. D 103, 055019

Acknowledgments: Input data for theoretical descriptions of various spectra presented were provided by L. Gráf and R. Dvornický. This contribution was supported with the grant No. 24-10180S.

Maros Petro on behalf of the SuperNEMO collaboration

