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Implementation of key strategies in spectrum model

3 years of measurement . . : more efficient use of statistics
Purpose of simulation studies
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Differential Detection Technologies Research Challenges

under investigation (1) Single electron tagging for time-of-
flight measurement I Ny -

e Quantum sensor detector arrays (metallic (University c?f Mdinster and University of pr?cF)eljsgixg ‘ repr(;]clensesmg return T, and impurities

magnetic calorimeters, transition edge sensors, ...) North Carolina) KAMATE
. T £ Elicht M ¢ (2) Enabling quantum sensors for (University of Mainz and TLK)

'me-ot-riig casurements detecting external electrons — Key technology to enable
T \ (KIT-IMS and KIT-1AP) paradigm shift in future tritium-based
The example of MMC's (3) Coupling cryo-platform at mK with neutrino-mass experiment Challenges to produce stable atomic

RT spectrometer
(University of Milano-Bicocca)

(4) Operation in magnetic field ~10 mT
(KIT-IMS and KIT-IAP)

(5) Multi-plexing of ~10° channels
(KIT-IPE)

(6) Confining hardware requirements to
reach defined physics goals (all groups)

(7) Constructing calibration sources
(KIT-IAP, TLK, University of Bonn,
CAS-UJF Rez)
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Atomic Tritium Demonstrator: :
* Development of atom cooling

mechanism to =10 mK

* Magnetic trapping of atoms for
extended time and densities

* |n process of forming joint working
group with Project 8, QTNM, ... for
atomic tritium demontrator

* Development at Tritium
Laboratory Karlsruhe for future
m,,-experiments

* Simple setup to demonstrate
tritium operation

* And investigate tritium
compatibility, recovery and

isotopic effects 6 ‘@ + C>/+' @\‘

Setup installed at Tritium Laboratory Karlsruhe (TLK) - First proof of principle expected in 2024
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