

Karlsruhe Institute of Technology

Sensitivity Studies towards a next-generation neutrino mass experiment using tritium β -decay

Svenja Heyns for the KATRIN++ R&D Group

Institute for Astroparticle Physics (IAP), Karlsruhe Institute of Technology (KIT)

Motivation

Outlook

Next-generation experiment to probe inverted mass ordering requires paradigm shift in technologies

 \rightarrow Ongoing research efforts for differential measurement: quantum sensor detector arrays and ToF measurements; investigation if combination can enhance advantages of both

 \rightarrow Building research community for atomic tritium source, to combine knowledge and develop stable high-luminosity source

 \rightarrow New simulation and analysis software SUNSET to translate hardware progress into achievable sensitivity on neutrino mass and guide the conceptual design

The KATRIN beamline and Tritium Laboratory Karlsruhe offer a unique facility to test and develop novel technologies for a next-generation neutrino mass experiments with tritium

Implementation of key strategies in spectrum model

Analysis window 30 eV below spectrum endpoint

Data generation with $m_{\nu} = 0 \text{ eV}$

Purpose of simulation studies

Specify particular hardware requirements to reach sensitivity on neutrino mass < 0.05 eV

more efficient use of statistics combined with lower background & sub-eV energy resolution

KIT – The Research University in the Helmholtz Association