

Search for a sub-eV sterile neutrino using Daya Bay's full dataset

Shiqi Zhang, Sun Yat-sen university, Mail: zhangshq33@mail2.sysu.edu.cn (On behalf of the Daya Bay collaboration)

Introduction

- > Why do we consider sterile neutrino?
 - Very generic extension of Standard Model. can be leftover of extended gauge multiplet
 - Useful phenomenological tool.
 - can explain neutrino masses (seesaw mechanism, $m_4 \sim 10^{15} \text{GeV}$)
 - can explain cosmic baryon asymmetry (leptogenesis, $m_4 \gg 100 \text{ GeV}$)
 - can explain dark matter ($m_4 \sim \text{keV}$)
 - can explain oscillation anomalies ($m_4 \sim eV$)

In the minimal "3+1" extension of the three-neutrino model, considering one sterile neutrino in addition to the three active neutrinos, the flavor eigenstates v_{α} ($\alpha = e, \mu, \tau, s$) are related to the four mass eigenstates v_i (i = 1, 2, 3, 4) as:

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_{\tau} \\ \nu_{s} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s 1} & U_{s 2} & U_{s 3} & U_{s 4} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ \nu_{4} \end{pmatrix}$$

where U is a unitary 4 × 4 mixing matrix. The matrix is in general parameterized by six mixing angles θ_{ij} and four CP-violating phases δ_i . The survival oscillation probability of the electron anti-neutrino is:

$$P_{\overline{\nu}_e \to \overline{\nu}_e}(L, E) = 1 - 4 \sum_{i=1}^{4} |U_{ei}|^2 |U_{ej}|^2$$

Where $\Delta_{ji} \approx 1.267 \Delta m_{ji}^2 [eV^2] L[m] / E[MeV]$.

L3

Ling Ao-II NPP

• L1

• L2

Ling Ao NPP

AD1 AD2

Daya Bay NPP

• D1

EH1

The simplest sterile neutrino model:

> Why is it "sterile"?

- Precision measurements of the Z-boson width are consistent with three light neutrino species participating in the weak interaction.
- How to detect it?
 - Via neutrino oscillation

The Daya Bay Experiment

Setup:

- 6 reactor cores
- 8 identical antineutrino detectors (ADs)
 4 ADs are in near halls (EH1, EH2)

4 ADs are in far halls (EH3)

Near-Far relative measurement

Possible hint of a sterile neutrino:

 A deficit of the electron-antineutrino event rate, accompanied by the dependence of the energy-spectrum distortion pattern (change the shape) on the distance
 between source and detector

Layout of the Daya Bay experiment

AD8 AD3

EH2

200 m

EH3

AD4

AD7 AD5

AD6

Analysis improvement and model test

- > Full dataset of the Daya Bay experiment:
 - IBD Candidates: \bar{v}_e candidates identified as inverse beta-decay interactions followed by neutron-capture on gadolinium

Constraint of the energy spectrum and event rate

- Sensitivity is dominated by relative comparison of spectra among experimental halls.
- The event rates also contribute to the sensitivity:
 - The absolute measurements between the data and model mainly influence the high $\left| \Delta m_{41}^2 \right|$ region ($\gtrsim 4 \times 10^{-2} \text{ eV}^2$).
- The relative comparison mainly influence the low $|\Delta m_{41}^2|$ region $(\leq 4 \times 10^{-2} \text{ eV}^2)$.

- The parameter space to the right of the contours is excluded.
- Influence of the systematic uncertainties (Unc.):

95% C. L.

ltem	Previous result	Full dataset
Detector operation time	1230 days	3158 days
IBD Candidates	2.5×10^{6}	5.6×10^{6}
Average background-to-signal ratio	~1.7%	~1.5%

Major Improvements of the systematic uncertainties:

Comparing with previous result,

- The ${}^{9}Li/{}^{8}He$ background is estimated using a new multi-dimensional fitting method, the relative uncertainty is reduced from ~ 35% to <25%.
- The channel-wise electronics nonlinearity is recalibrated using an FADC readout system;

The energy response model is constrained with new calibration data; Uncertainty of the energy response model improved from $\sim 1\%$ to <0.5% for prompt energies larger than 2 MeV.

> Comparison of the data and model:

- The survival probability v.s baseline (L) over neutrino energy $(E_{\overline{\nu}_e})$
- The Data is compared with
 3 neutrino model (3v) and
 (3+1) neutrino model (4v).

• The systematic uncertainties are split into three groups:

Systematic Unc. group	Influence on the sensitivity
Background related	negligible effect
Reactor related	$\left \Delta m_{41}^2 \right \gtrsim 4 \times 10^{-3} \mathrm{eV}^2$
Detector related	$\left \Delta m_{41}^2 \right \lesssim 3 \times 10^{-2} \mathrm{eV}^2$

Exclusion contours 10°

- Exclusion contour with Gaussian CL_s method is shown and compared with other reactor experiments.
- The contour that results from applying the raster scan (RS) method to the

• The data used effective baseline and average neutrino energy.

Hypothesis test of the standard 3-neutrino model

- Test statistic: $\Delta \chi^2 = \chi^2_{3\nu} \chi^2_{4\nu}$,
- $\Delta \chi^2$ value for the data is compared with $\Delta \chi^2$ distribution generated by Monte Carlo samples under the 3v oscillation hypothesis including statistical and systematic variations.
- *p*-Value = 0.86

The data are consistent with the three-neutrino prediction. No sterile neutrino signal is found. Daya Bay data is consistent with the one obtained using the CL_s method. We also released the contour obtained with the Feldman-

The world's most stringent limits on the sterile-active neutrino mixing parameter $sin^2 2\theta_{14}$ were obtained in the region of $2 \times 10^{-4} \text{eV}^2 \lesssim \left| \Delta m_{41}^2 \right| \lesssim 0.2 \text{eV}^2$.

 10^{-1}

 10^{-2}

eV²]

Details are shown in the paper: <u>arXiv:2404.01687 [hep-ex]</u>