

# **ICHEP 2024** PRAGUE

42<sup>rd</sup> International Conference on High Energy Physics July 17-24 2024 Prague Czech Republic



ichep2024.org





# **Detecting neutrinos from supernova bursts in PandaX-4T** Binyu Pang, on behalf of the PandaX-4T collaboration Research Center for Particle Science and Technology, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong, China pangbinyu@mail.sdu.edu.cn



# **1. Introduction**

First/only observation of supernova (SN) neutrinos from 1987A.

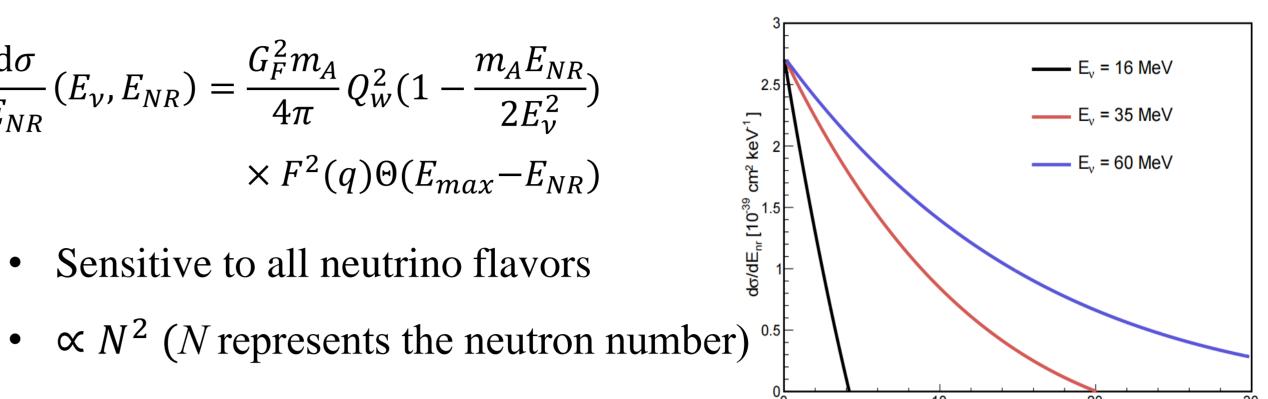


©Australian Astronomical Observatory

Core-collapse SN explosion:

- Approximately three times per century in Milky Way
- Last for ~10 s
- Total energy  $\sim 10^{53}$  erg

**Start of neutrino astronomy!** 

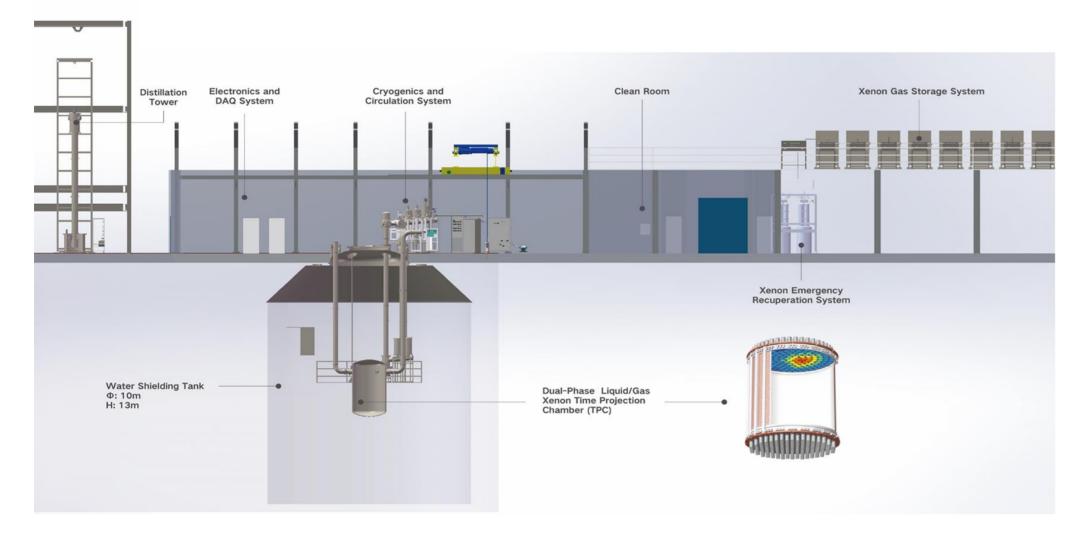

# **3. Detection of SN neutrinos at PandaX-4T**

**Coherent elastic neutrino-nucleus scattering(CEvNS):** •  $\nu$  + nucleus  $\rightarrow \nu$  + nucleus

# The differential cross section of the CEvNS :

 $\frac{d\sigma}{E_{NR}}(E_{\nu}, E_{NR}) = \frac{G_F^2 m_A}{4\pi} Q_w^2 (1 - \frac{m_A E_{NR}}{2E_{\nu}^2})$  $\times F^2(q)\Theta(E_{max}-E_{NR})$ 

• Sensitive to all neutrino flavors




- Neutrinos arrive on earth much earlier than electromagnetic radiation. ullet
- Supernova early warning can be provided for the astronomical community.  $\bullet$

## 2. PandaX-4T experiment

Dual-phase xenon time projection chamber (TPC) technique to detect dark matter and neutrino.

Locate in Jinping Underground laboratory in China with 2400m overburden.



- Sensitive volume: 3.7 tonne liquid xenon
- 3-inch PMTs: 169 top / 199 bottom
- Good discrimination of electron recoil/nuclear recoil  $\bullet$

- **Energy spectrum of SN neutrinos** ullet
- Enr [keV]

For Garching model, it can be characterized using Keil-Raffelt-Janka (KRJ) parametrization: 1000×10<sup>54</sup>

$$\frac{dF(E_{\nu}, t_{pb})}{dE_{\nu}} = \sum_{\nu=1}^{6} L_{\nu}(t_{pb}) \frac{(1+\gamma(t_{pb}))^{1+\gamma(t_{pb})}}{\left\langle E_{\nu}(t_{pb})\right\rangle^{2} \Gamma(1+\gamma(t_{pb}))} \xrightarrow{(000 \text{ M})}{(E_{\nu}(t_{pb}))^{2} \Gamma(1+\gamma(t_{pb}))}} \xrightarrow{(000 \text{ M})}{(E_{\nu}(t_{pb}))^{2} \Gamma(1+\gamma(t_{pb}))}} \xrightarrow{(000 \text{ M})}{(E_{\nu}(t_{pb}))^{2} \Gamma(1+\gamma(t_{pb}))}} \xrightarrow{(000 \text{ M})}{(E_{\nu}(t_{pb}))^{2} \Gamma(1+\gamma(t_{pb}))}} \xrightarrow{(000 \text{ M})}{(E_{\nu}(t_{pb}))^{2} \Gamma(1+\gamma(t_{pb}))}}$$

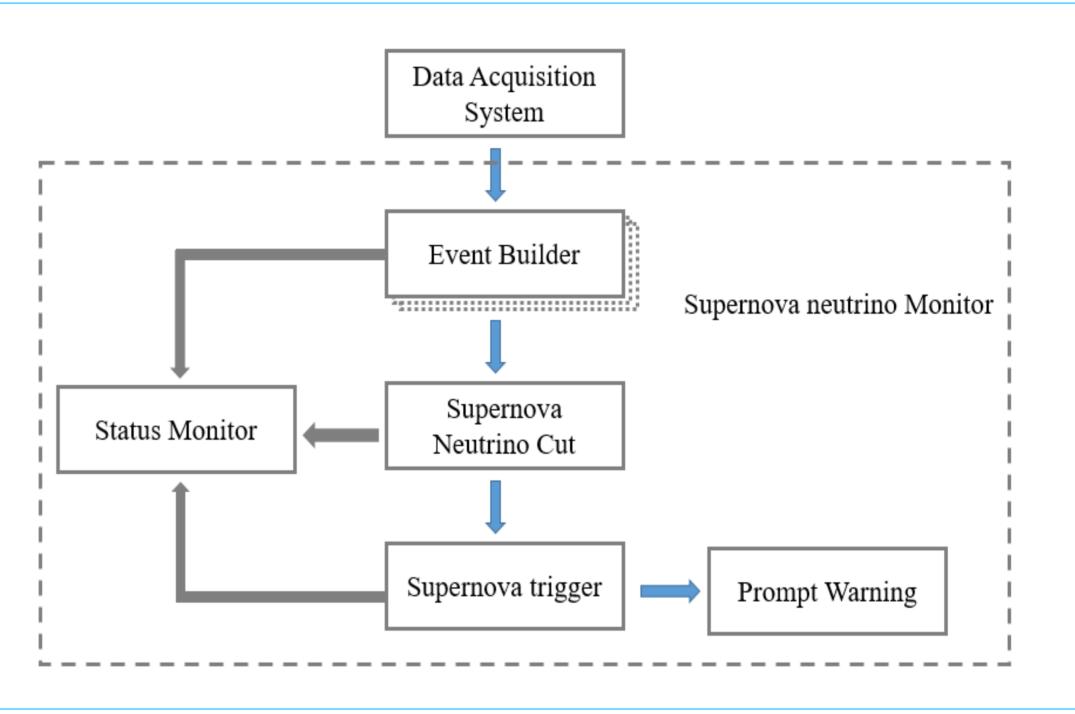
35 40 E<sub>v</sub> [MeV] 20 25 15 Siganl spectrum in liquid xenon detector The differential event rate :  $\frac{dN_0}{dE_{NR}}(E_{NR}) = \frac{m_{det}N_A}{M_A(4\pi D^2)} \int_{E_v^{min}}^{\infty} \frac{d\sigma}{dE_{NR}}(E_v, E_{NR}) \xrightarrow{10} 10$   $\times f(E_v)dE_v$ Considering the detection efficiency:

$$\frac{dN}{dE_{NR}}(E_{NR}) = \epsilon(E_{NR}) \times \frac{dN_0}{dE_{NR}}(E_{NR})$$

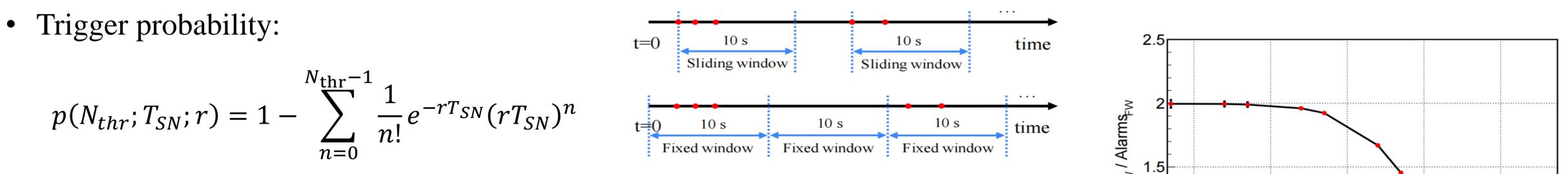
The red and pink lines indicate efficiency.

Golden trigger : False alert rate is once a month.

Silver trigger : False alert rate is once a week.


## 4. SN off-line trigger system of PandaX-4T

Level 1: Preliminary filter to build event.


Level 2: Apply data quality selection to reduce background.

Level 3: The trigger algorithm to search alarm signal.

The entire process takes several minutes for each individual file on average.



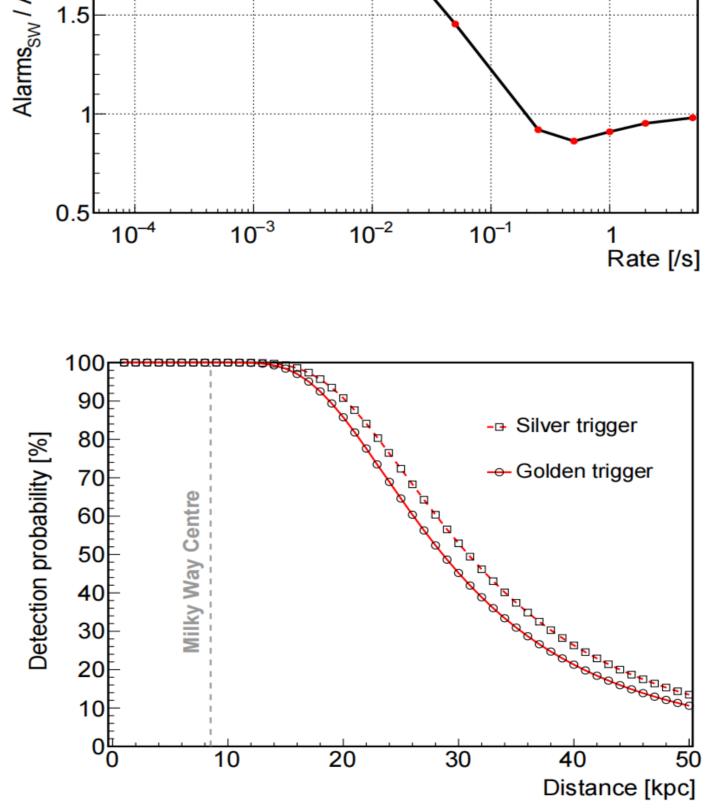
## **5.** Estimation of false alert rate & trigger efficiency



• The false alert rate per week:

$$R_{false} = \frac{3600 \cdot 24 \cdot 7}{T_{SN}} p(N_{thr}; T_{SN}; r_{bg})$$

The background is nearly negligible.


• The signal trigger efficiency:

 $\epsilon = p(N_{thr}; T_{SN}; r_{SN})$ 

- ~100% probability@10 kpc
- 678.2 per century on the rate of core-collapse SN explosion in our galaxy out to 10 kpc

| Data type | Rate [/s]             | Calendar time         | Observed | Expected |
|-----------|-----------------------|-----------------------|----------|----------|
| DD        | $3.61 \times 10^{-3}$ | $3.58 \mathrm{~days}$ | 40       | 38       |
| AmBe      | $3.12 \times 10^{-3}$ | $5.7 \mathrm{~days}$  | 49       | 46       |
| Physical  | $3.6 \times 10^{-4}$  | $86.1 \mathrm{~days}$ | 8        | 9.8      |

| SN model                  | Golden alarm |                   | Silver alarm |                     |
|---------------------------|--------------|-------------------|--------------|---------------------|
|                           | D=10 kpc     | 168 pc            | 10 kpc       | 168 pc              |
| 20 $M_{\odot}$ Nakazato   | 7.2          | $2.6 \times 10^4$ | 8.3          | $2.9 \times 10^4$   |
| 11.2 $M_{\odot}$ Garching | 6.6          | $2.3 \times 10^4$ | 7.7          | $2.7 \times 10^4$   |
| 27 $M_{\odot}$ Garching   | 13.7         | $4.9 \times 10^4$ | 15.9         | $5.7 \times 10^{4}$ |



## **6.** Future prospects

- The relevant electronics is being designed.
- Pandax-4T will apply to join SuperNova Early Warning System (SNEWS).
- PandaX-xT (~40-tonne liquid xenon) has been proposed.

#### References

[1] Phys. Rev. D 79(8), 083013 (2009)

[2] Astrophys.J. 909 (2021) 2, 169

42<sup>th</sup> International Conference on High Energy Physics (ICHEP2024), Prague, Czech Republic