Improved Event Selection of ν_{ρ} Charged-Current Single-Pion Production Interactions at T2K Far Detector

Yashwanth S. Prabhu

ICHEP 2024

1. The T2K Experiment

Long baseline neutrino experiment that studies neutrino oscillations with a

3. Improved SK detector systematics

SK detector modelling errors, which manifest as **biases in PID variables** are estimated through **shifting and smearing** of PID variables using an Markov Chain Monte Carlo approach.

- A fit using **SK atmospheric data and MC** is performed on a total of **540** parameters (one shift and smear parameter for each of the 10 PID variables x 9 topologies x 3 visible energy bins)
- The errors on T2K beam samples are then

 $\nu_{\mu}(\overline{\nu}_{\mu})$ beam produced at J-PARC and a suite of near detectors and a far detector.

The far detector, **Super-Kamiokande** (SK) captures **Cherenkov rings** produced by charged particles moving through water with excellent PID capability based on the ring shape.

T2K's main goals are **precision** measurements of atmospheric mixing parameters and the leptonic CP violating **phase** $\delta_{\mathbf{CP}}$, key to explaining the matterantimatter asymmetry in the universe.

 ν_{ρ} appearance from the T2K beam at SK gives sensitivity to δ_{CP} .

2. The multi-ring $\nu_e \operatorname{CC} 1\pi^+$ sample

Charged Current single pion production (**CC** $1\pi^+$) interactions are the **second-most dominant** interactions at T2K's beam energy after CC quasi-elastic interactions.

obtained through a **toy MC procedure** by sampling from these MCMC posteriors and reweighting the beam MC to obtain event rate variations.

- For the next fit: Systematics on the **new** sample's PID and targets its associated $1e^- + 1\pi^+$ topology at SK.
- **Updated treatment** of **Michel** electron tagging, improved **implementation** of single-ring and multi-ring event migrations.
- Re-evaluation of **secondary** interactions and photonuclear uncertainties.
- Preliminary studies show finite reductions in errors for samples.

Pre-fit MC

Comparison of diagonal elements from the SK detector covariance mati

4. T2K's upcoming Oscillation Analysis

The sample is now implemented

			PreND Asi
T2K Work in Pro	gress		

T2K's past oscillation analyses already used a single-ring ν_{ρ} CC1 π^+ sample, whose π^+ momentum is below its Cherenkov threshold.

This sample had a **data excess** at **low momentum**[1], but was not statistically significant. The same sample with much higher statistics at SK also showed a similar trend, barring statistical fluctuations.

Adding the multi-ring $\nu_e CC1\pi^+$ sample with the π^+ momentum above its Cherenkov threshold removes the threshold dependence separating the two samples, and hence any biases coming from pion kinematic modelling.

This also increases the total ν_{ρ} CC1 π^+ statistics **by ~60%**, predicting ~6 more events to the ν_{ρ} appearance analysis for T2K's Run1-11 data

Fid. Volume + SK inner det.

in T2K's oscillation analysis fitters.

- The upcoming analysis includes multiple improvements in the near detector, and also in the cross-section model.
- Checked the **impact of near** detector constraints on the far detector predictions from an Asimov fit^[2].

Data fits are on their way!

Posterior predictive distribution of the combined ν_e CC1 π^+ sample

5. Summary

- New multi-ring $\nu_e CC1\pi^+$ sample added at T2K's far detector that **removes** π^+ **kinematic modelling dependence** and also increases ν_e appearance statistics.
- **Revamped SK detector systematics** including the new sample and other updates in various components, with expected

Reco. E_{ν} < 1.25 GeV

^f Topology here is defined as the number and particle type of Cherenkov rings observed at SK.

The multi-ring $\nu_e \text{CC} 1\pi^+$ sample has an $e^- + \pi^+$ topology[†] at SK

Cut	$\nu_e CCQE$	$\nu_e \operatorname{CC1} \pi^+$	$\nu_e/\overline{\nu}_e \operatorname{CC}$	ν_{μ} CCQE	$\nu_{\mu} \operatorname{CC1} \pi^+$	$\nu_{\mu}/\overline{\nu}_{\mu}$ CC	NC	MC Total
FC	99.89	51.33	54.78	319.10	227.76	510.90	459.70	1723.46
FC, FV, <i>E</i> _{vis}	22.40	24.79	34.61	22.06	68.65	333.43	302.06	807.98
No. of Rings	5.41	10.77	7.62	11.36	24.16	46.17	159.67	265.17
No. of Decay <i>e</i>	0.14	6.25	1.87	4.31	10.33	20.89	17.08	60.86
$e\pi/\pi\pi$ PID	0.14	5.84	1.83	0.26	1.64	10.70	10.94	31.35
$e\pi/\pi^0$ PID	0.06	3.90	0.40	0.18	0.65	2.39	1.62	9.19
$E_{rec} < 1.25 \mathrm{GeV}$	0.01	3.28	0.18	0.12	0.53	0.92	1.01	6.05

linkedin.com/in/nue-standard

<u>x.com/nue_standard</u>

reduction in errors across all samples.

Stay tuned for T2K's oscillation analysis results with all these additions coming soon!

[1] <u>Eur.Phys.J.C 83 (2023) 9, 782</u> [2] E. Miller, *Fitting T2K Near Detector Data using Markov Chain Monte Carlo*, Neutrino 2024

Acknowledgements

J. Łagoda, K. Skwarczyński, Michael Reh, T2K-SK & Oscillation Analysis Working Groups