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Constraints —

> Conventional neutrino beam contains only
1.5% of v_, challenging to measure its
cross-section.

Physics Goals —

1. Measuring matter asymmetry in the universe through
measuring CP violation (CPV) in the neutrino sector —

P(v, — ve) # P(v, — )

~

Analysing Particle ldentification (PID) performance for IWCD current geometry to study v_ event
samples using fiTQun—Improving sensitivity and precision of v_ cross-section measurements.

/Aim of this work —

>

Intrinsic flux of v, /v, produce single
electron sample, use to constrain o,,e/a,,ﬂ,
k 0p,/05, — CP violation search

2. Study neutrino oscillation - through observing accelerator,
atmospheric, solar, supernova and astrophysical neutrinos,
nucleon decay searches.

Building up a new Machine Learning (ML) analysis framework for IWCD event selection
improving both purity and efficiency of the signal over fiTQun.
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IWCD Event Reconstruction with fiTQun
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Machine Learning (ML) for Electron Neutrino Event Selection

ML training and application to classify IWCD particle-gun events Application of new ML Methodology to select electron neutrino events
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