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Where I’m going:

Mixed HD duality between color and kinematics  
+ factorization consistency induces a TOWER of EFT 
operators to the UV

In case of  + YM, double copy lands on so called 
“twisted” string theory amplitudes — with HD freedom 
that lands on e.g. open, closed, heterotic
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This has implications for UV completions of N=4 SG

This has applications to inflationary cosmology

Can be easily exploited for bootstrapping encoding of 
massive resonances.
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MII E
NCH NCH
dg

L = (@A)2 + g1A2 (@A) + g2A4

The traditional story

color-dual kinematics + DC = linear diffeo inv.

color-dual kinematics = linearized gauge-invariance

Intuition around color-dual and operator constraints:

≠ 0

Kinematic building blocks:

ki ⋅ kj = 0 ki ⋅ εi = 0

εi ⋅ εj ki ⋅ εj

Given:
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= ×
f abc

(ε1 ⋅ ε2)(k1 − k2) ⋅ ε3 + …

Fixed by Bose Symmetry
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Resums to NLSM:

The traditional story
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T X X X ooo

LYM+F
3

=¡1
4
F 2 +

®0

3
F 3 + ®0 2F 4

+®0 2
X

n

c(n)®
0nD2nF 4

ADF
2+YM+HD

4 = ADF
2+YM

4

³
1 +

X
c(x;y)¾

x
3¾

y
2

´

LDF
2+YM+HD

Intuition around color-dual and operator constraints:



New story in the UV!
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Color/Kinematics + EFT (mixed HD contacts) 
constraints UP!
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FIG. 1. We can segment the full Yang-Mills e↵ective expansion by counting derivatives, D2, and

field strengths, F , in what we call the color-dual factorization pyramid. Operators appearing

at the lowest rung (lightest blue) in the factorization pyramid are first combined via color-dual

constraints on the kinematic numerators (or partial amplitudes) at fixed order O(↵0m). Then

they are woven together with lower orders in O(↵0n<m) via factorization. We argue that all order

considerations could produce modified kinetic terms, in the same spirit as what was achieved with

building DF2 +YM from double-copy consistent YM+ F3 amplitudes in [7].

at some fixed ↵0n for spacetime dimension D = 2n + 4. This is because the bi-adjoint

scalar is critical in D = 6, and thus the dimension of renormalization is unchanged when

double-copying with color factors.

However, in the interest of constructing generic theories from the double-copy, one will

in principle need to consider all-order corrections to Yang-Mills. Indeed, while Yang-Mills is

critical in D = 4, double-copying it with itself yields a gravitational theory, that is critical

in D = 2 by naive power counting. Absent enhanced UV cancellation [42–55] from some

hidden symmetry (as is the case in some supersymmetric theories of gravity for which the

UV divergence is delayed beyond the naive power counting argument), we should expect an

infinite tower of operators to become relevant near the UV cuto↵ scale of the theory. As

such, understanding all order in ↵0 corrections to double-copy consistent theories is necessary

for probing UV completions.

As we have shown at the beginning of this section, many of these higher-derivative op-

erators exhibit surprising non-trivial relations in their Wilson coe�cients. We believe that

this could be a hint for a tower of massive resonances needed for all-order double copy

consistency. The general setup is something like the sketch depicted in Fig. 1. Color-dual

11

Color-dual consistency and EFT

JJMC, Pavao
2310.06316 



Natural encoding of massive resonances in a 
bootstrapped tower of color-dual HD operators
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From this perspective, direct approaches like eq. (1) that capture massive residues in the

propagators of massive cubic graphs, could be inadvertently sidestepping a key insight of

known double-copy models.

Our approach in this work is grounded on the idea that massive residues in amplitudes

of ultraviolet complete double-copy theories, AUV, including gauge theories, are strikingly

described in terms of the massless double-copy. In this paradigm, massive residues are

encoded in the Wilson coe�cients of color-dual higher derivative operators that can be

resummed in the ultraviolet:

A
UV =

X

g

cgNg

dg
�! M

UV =
X

g

ñgNg

dg
(2)

where the e↵ective kinematic numerators, Ng, contain contributions from all order in higher

derivative operators,

Ng = ng +
X

k

ck(↵
0)kn(k)

g . (3)

whose Wilson coe�cients ck are rigidly tuned to produce the desired resonance profile upon

resummation.

Our setup is perhaps is not so surprising in principle. However we also suggest there is

a straightforward path to resolve the color-dual UV prediction directly from the color-dual

IR amplitude,

A
IR =

X

g

cgng

dg
�! A

UV =
X

g

cgNg

dg
(4)

At four-points we identify a simple and suggestive formula for the UV ordered amplitudes

that demonstrates two representations; one which highlights the location of massive poles,

and one which exposes the exponential behavior that softens the UV. Both are expressed in

terms of the IR amplitude, AIR, stripped out as an overall factor:

AUV
4 = AIR

4 ⇥

Y

k=1

Pk(�2, �3)

(s� µk)(t� µk)(u� µk)
(5)

= AIR
4 ⇥

1Y

k=1

exp
⇥
ck ⌦k(�2, �3)

⇤
(6)

where s, t, u represent the typical four point Mandelstam invariants, Pk and ⌦k at four-points

are simply functions of Mandelstam permutation invariants,

�2 =
s2 + t2 + u2

2
�3 =

s3 + t3 + u3

3
. (7)

4

I. INTRODUCTION

The duality between color and kinematics [1, 2] and associated double copy construc-

tion [2] has proven to be an e↵ective tool in the calculation of quantum gravity scattering

amplitudes to high orders in perturbation theory [3–6]. In addition, beyond perturbative

calculations, recent literature has demonstrated that color-kinematics duality can also place

unexpected constraints on all-order higher derivative operators. This has been shown in

both in higher derivative vector theories [7, 8], e↵ective scalar theories [8–10] as well as

constraints on generalizations of the inverse Kawai-Lewellen-Tye (KLT) momentum kernel

[11, 12]. This growing body of literature concerning the color-dual constraints on e↵ective

field theory suggests that graphical organization of scattering amplitudes can be used to

bootstrap UV physics directly from IR data [7]. Here we suggest that it is precisely this

structure that can inform the organization of massive residues in the context of low energy

EFT operators.

Before proceeding, we note that there are many other studies of encoding massive states1

with double-copy construction that is di↵erent than what we propose here. Typically, mas-

sive double copies approach the problem via local construction of massive modes, Lkin =

B(@2
�m2)B, where kinetic terms are quadratic in the normal field theoretic sense. These

approaches apply the double-copy over local massive propagators of the form:

A =
X

g

cgng

dg �m2
g

�! M =
X

g

ñgng

dg �m2
g

(1)

While this is a potentially insightful approach to understanding the gravitational equivalence

principle through the lens of the double copy, our construction here proposes a di↵erent

paradigm.

The approach we take is informed by the above-mentioned constraints on higher-

derivative operators. Because the duality between color and kinematics is agnostic to

the spacetime dimension, as we emphasize below, consistent factorization places constraints

beyond the renormalizable sector of any theory. As demonstrated by Z-theory [19–25], the

duality between color and kinematics applied to cubic graphs encoding massless dynamics,

in combination with consistent factorization, can consistently capture massive resonance and

emergent ultraviolet behavior characteristic of stringy dynamics at least through tree-level.

1 See e.g. refs. [13–18] and references therein for examples.
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To recover the pions of the Standard Model, one simply treats the structure constants as

describing some flavor symmetry, speficying SU(2) for the desired isospin symmetry of low

energy QCD. We will embed the UV mass spectrum encoded by,

M2-mode =
1⇥ 103

(s↵0 � 1)(t↵0 � 1)(u↵0 � 1)(s↵0 � 10)(t↵0 � 10)(u↵0 � 10)
. (98)

Again, ↵0 = 1/⇤, where ⇤ is the cuto↵ scale and ↵0 is the pion decay width for the NLSM.

For the purposes of this exercise, we take ourselves as living deep in the IR and so only

have experimental access to the Wilson coe�cients measured in some fixed-angle scattering,

taking u = �s� t and t = �s/2, up to some finite precision.

Let us consider the di↵erence between what we can infer with Padé approximants if we

have access to 6 vs 10 Wilson coe�cients, to a precision of four significant digits7. The

relevant expansions are subsets of the series expansion,

A = A
IR

⇥
⇥
1.000 + 1.010(↵0)2�2 + 1.001(↵0)3�3 + 1.010(↵0)4�2

2 + 2.01(↵0)5�2�3

+ (↵0)6
�
1.010�3

2 + 1.001�2
3

�
+ 3.02(↵0)7�2

2�3 + (↵0)8
�
1.010�4

2 + 3.01�2�
2
3

�

+(↵0)9
�
4.03�3

2�3 + 1.001�3
3

�
+ (↵0)10

�
1.01�5

2 + 6.03�2
2�

2
3

�
+O(↵0)11

⇤
. (99)

Of course any perturbative expansion will fail to catch even the first resonance. Even

with access to only four-significant digits, the R[3,3] approximant to the O(↵0)6 expansion

captures the first resonance, and the R[5,5] approximant to the O(↵0)10 expansion manages

to encode both resonances. We plot the fixed-angle predictions for the A(1234) ordered

amplitude8 in Fig. 2.

As we discuss in the conclusion, leveraging non-perturbative data from such a small

number of Wilson-coe�cients has a number of potential opportunities both for empirical

expectations for new signals as well as formal insight relating non-perturbative behavior of

theories participating in the double-copy web of theories.

7 Perhaps we should emphasize that this does not come for free. In order to measure the Wilson coe�cients

to such precision at O(↵0)10 deep in the IR requires astoundingly accurate experiments.
8 The coe�cient of fa1a2bf ba3a4 after using the Jacobi identity to rewrite fa4a1bf ba2a3 = fa1a2bf ba3a4 �

fa3a1bf ba4a2 in eq. (99) as per section II.
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use to extract non-perturbative information about the spectrum, directly from the Wilson

coe�cients of color-dual operators appearing in eq. (89). We turn to these methods now.

B. From Wilson Coe�cients to Masses

In the remainder of this section we will introduce Padé approximants as an analytic tool

for probing the non-perturbative spectra of double-copy consistent amplitudes with generic

Wilson coe�cients. A Padé approximant is a rational function of the form,

R[m,n](x) ⌘
Am(x)

Bn(x)
, (94)

where [m,n] is the degree of the polynomials, Am and Bn, respectively:

Am(x) =
mX

j=0

ajx
j, Bn(x) = 1 +

nX

j=0

bjx
j . (95)

The coe�cients of R[m,n] are defined in order to match the first m + n derivatives when

expanded around a point, x = x0,

f (k)(x0) = R
(k)
[m,n](x0) k  m+ n . (96)

Padé approximants have been used widely in the resurgence literature for extracting infor-

mation about non-perturbative physics, like instantons, when only pertubative information

is available. For background, we direct the reader to refs. [80–83]. For our purposes, we

will use them to study the behavior of mass spectra in generic classes of consistent mass

resonance double-copy models, even when the closed form resummation of the amplitude is

not directly computable.

As straightforward example that demonstrates the power of these ideas in the context

of e↵ective field theory, let us consider a scalar e↵ective field theory that looks like a chiral

perturbation theory [84], with two resonant masses beyond the ↵0 = 1 scale of the pion decay

width. To demonstrate the reach of these non-perturbative methods, we introduce an order

of magnitude separation between resonances with µ1 = 1 and µ2 = 10. In our framework

the purely IR amplitude, AIR, is just that of the nonlinear sigma model (NLSM), a known

color-dual theory [85–88], which is the leading order contribution in chiral Lagrangian [84].

The four-point amplitude is simply:

AIR = fa1a2bf ba3a4(s23 � s13) + fa4a1bf ba2a3(s12 � s13) + fa3a1bf ba4a2(s23 � s12) . (97)
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Again, ↵0 = 1/⇤, where ⇤ is the cuto↵ scale and ↵0 is the pion decay width for the NLSM.

For the purposes of this exercise, we take ourselves as living deep in the IR and so only

have experimental access to the Wilson coe�cients measured in some fixed-angle scattering,

taking u = �s� t and t = �s/2, up to some finite precision.

Let us consider the di↵erence between what we can infer with Padé approximants if we

have access to 6 vs 10 Wilson coe�cients, to a precision of four significant digits7. The

relevant expansions are subsets of the series expansion,

A = A
IR

⇥
⇥
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+ (↵0)6
�
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3

�
+ 3.02(↵0)7�2

2�3 + (↵0)8
�
1.010�4

2 + 3.01�2�
2
3

�

+(↵0)9
�
4.03�3

2�3 + 1.001�3
3

�
+ (↵0)10

�
1.01�5

2 + 6.03�2
2�

2
3

�
+O(↵0)11

⇤
. (99)

Of course any perturbative expansion will fail to catch even the first resonance. Even

with access to only four-significant digits, the R[3,3] approximant to the O(↵0)6 expansion

captures the first resonance, and the R[5,5] approximant to the O(↵0)10 expansion manages

to encode both resonances. We plot the fixed-angle predictions for the A(1234) ordered

amplitude8 in Fig. 2.

As we discuss in the conclusion, leveraging non-perturbative data from such a small

number of Wilson-coe�cients has a number of potential opportunities both for empirical

expectations for new signals as well as formal insight relating non-perturbative behavior of

theories participating in the double-copy web of theories.

7 Perhaps we should emphasize that this does not come for free. In order to measure the Wilson coe�cients

to such precision at O(↵0)10 deep in the IR requires astoundingly accurate experiments.
8 The coe�cient of fa1a2bf ba3a4 after using the Jacobi identity to rewrite fa4a1bf ba2a3 = fa1a2bf ba3a4 �

fa3a1bf ba4a2 in eq. (99) as per section II.
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FIG. 2. Expanded series expansions, O(↵0)6 and O(↵0)10, as well as Padé approximant R[3,3] to the

O(↵0)6 expansion (left) plotted against the fully resummed UV function. No matter how high the

perturbative expansion, it will never capture even the first emergent resonance, but the behavior

is spectacularly captured in the R[3,3] approximant. On the second panel (right), we show the

behavior of Padé approximants R[3,3] to the O(↵0)6 series expansion and R[5,5] to the O(↵0)10

series expansion near the domain of the second resonance. We find that a relatively small number

of Wilson coe�cients allow us in R[5,5] to recover the full spectrum of massive modes.

VII. CONCLUSIONS

In this work we have demonstrated two mechanisms for understanding UV behavior

of scattering amplitudes directly from perturbative information in the IR – double-copy

consistency of e↵ective field theory, and Padé approximants for fixed-angle 2-to-2 scattering

amplitudes. To properly frame these approaches, we provide below a brief outline of the

main results of the paper and future directions made possible by this work.

A. Summary

a. Menu of Massive Resonance We began with an overview of the interplay between

massive resonance and double-copy constructible theories studied in the literature from YM+

F3 theory in section III, to string amplitudes and Z-theory in section IV. We provided an

argument for why one might expect color-kinematics duality to impose all-order constraints

on e↵ective operators that in principle could resum to non-local kinetic operators in the UV.

In Fig. 1, we introduced the color-dual factorization pyramid, where gauge field operators
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 Padé approximants 

use to extract non-perturbative information about the spectrum, directly from the Wilson

coe�cients of color-dual operators appearing in eq. (89). We turn to these methods now.

B. From Wilson Coe�cients to Masses

In the remainder of this section we will introduce Padé approximants as an analytic tool

for probing the non-perturbative spectra of double-copy consistent amplitudes with generic

Wilson coe�cients. A Padé approximant is a rational function of the form,

R[m,n](x) ⌘
Am(x)

Bn(x)
, (94)

where [m,n] is the degree of the polynomials, Am and Bn, respectively:

Am(x) =
mX

j=0

ajx
j, Bn(x) = 1 +

nX

j=0

bjx
j . (95)

The coe�cients of R[m,n] are defined in order to match the first m + n derivatives when

expanded around a point, x = x0,

f (k)(x0) = R
(k)
[m,n](x0) k  m+ n . (96)

Padé approximants have been used widely in the resurgence literature for extracting infor-

mation about non-perturbative physics, like instantons, when only pertubative information

is available. For background, we direct the reader to refs. [80–83]. For our purposes, we

will use them to study the behavior of mass spectra in generic classes of consistent mass

resonance double-copy models, even when the closed form resummation of the amplitude is

not directly computable.

As straightforward example that demonstrates the power of these ideas in the context

of e↵ective field theory, let us consider a scalar e↵ective field theory that looks like a chiral

perturbation theory [84], with two resonant masses beyond the ↵0 = 1 scale of the pion decay

width. To demonstrate the reach of these non-perturbative methods, we introduce an order

of magnitude separation between resonances with µ1 = 1 and µ2 = 10. In our framework

the purely IR amplitude, AIR, is just that of the nonlinear sigma model (NLSM), a known

color-dual theory [85–88], which is the leading order contribution in chiral Lagrangian [84].

The four-point amplitude is simply:

AIR = fa1a2bf ba3a4(s23 � s13) + fa4a1bf ba2a3(s12 � s13) + fa3a1bf ba4a2(s23 � s12) . (97)
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FIG. 2. Expanded series expansions, O(↵0)6 and O(↵0)10, as well as Padé approximant R[3,3] to the

O(↵0)6 expansion (left) plotted against the fully resummed UV function. No matter how high the

perturbative expansion, it will never capture even the first emergent resonance, but the behavior

is spectacularly captured in the R[3,3] approximant. On the second panel (right), we show the

behavior of Padé approximants R[3,3] to the O(↵0)6 series expansion and R[5,5] to the O(↵0)10

series expansion near the domain of the second resonance. We find that a relatively small number

of Wilson coe�cients allow us in R[5,5] to recover the full spectrum of massive modes.

VII. CONCLUSIONS

In this work we have demonstrated two mechanisms for understanding UV behavior

of scattering amplitudes directly from perturbative information in the IR – double-copy

consistency of e↵ective field theory, and Padé approximants for fixed-angle 2-to-2 scattering

amplitudes. To properly frame these approaches, we provide below a brief outline of the

main results of the paper and future directions made possible by this work.

A. Summary

a. Menu of Massive Resonance We began with an overview of the interplay between

massive resonance and double-copy constructible theories studied in the literature from YM+

F3 theory in section III, to string amplitudes and Z-theory in section IV. We provided an

argument for why one might expect color-kinematics duality to impose all-order constraints

on e↵ective operators that in principle could resum to non-local kinetic operators in the UV.

In Fig. 1, we introduced the color-dual factorization pyramid, where gauge field operators
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Takeaways:

Mixed HD duality between color and kinematics  
+ factorization consistency induces a TOWER of EFT 
operators to the UV

In case of  + YM, double copy lands on so called 
“twisted” string theory amplitudes — with HD freedom 
that lands on e.g. open, closed, heterotic

F 3

JJMC, Pavao, Lewandowski
2203.03592, 2211.04441, 2310.06316   

This has implications for UV completions of N=4 SG

This has applications to inflationary cosmology

Can be easily exploited for bootstrapping encoding of 
massive resonances.
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The SAGEX review on scattering amplitudes (chapter 2), 2203.13013 

The Duality Between Color and Kinematics and its Applications, 1909.01358 

Supergravity amplitudes, the double copy and ultraviolet behavior, 2304.07392

-focus on UV behavior of SG

-gentle overview for broad audience, nice discussion including 
 non-flat backgrounds, classical solns, GW astrophysics, 
cosmological challenges 

-gentle introduction targeting amplitudes expertise

-technical, overview of literature ~ 2019
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