Local renormalisation from Causal
Loop-Iree Duality
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Abstract

We report recent progress on the development of a local renormalisation

2-loop example

. We first test our formalism with a 2-loop IS

formalism based on Causal Loop-Tree Duality. By performing an sunrise diagram. The local UV counter- | _‘N‘T;ZZ::C
expansion around the UV-propagator in an Euclidean space, we manage term is: CUHRE
to build counter-terms to cancel the non-integrable terms in the UV limit. This . T T S 2 TR TP =S
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expansion is performed at the level of on-shell energies. The proposed
formalism is tested up to 3-loops, with relevant families of topologies. In all
the cases, we successfully cancel the UV divergences and achieve a
smooth numerical implementation. These results constitute a first step
towards a new renormalisation program in four space-time dimensions
(by-passing DREG), perfectly suitable for fully numerical simulations.
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. We study the stability of the numerical integration, changing the UV cut-off
(B) and modifying the masses (A) and the UV scale (C). Different integration
strategies are used, showing a smooth convergence in the UV region.
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we cut once per loop. Replace cut with delta (remove energy component) and B Nintegrate | u::_1
other propag_ators are promoted to “_dual propage!tors” (modified presc_ripti_on). osesl T 322:‘: . o ez
. 2" generation LTD: Nested residues (multiloop): Iterated application of qosob o 0.00 i
Cauchy residue theorem, removing one component of each loop momenta. o 10" 107 0% 1% s
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. Changing the UV scale, the renormalized amplitude varies drastically: this
mdicates a very divergent UV limit, and a good local cancelation.

Several cancellations take place; only a few physical residues remain.
[More details in Phys.Rev.Lett. 124 (2020) 21, 211602, JHEP 01 (2021) 069 & JHEP 02 (2021) 1 1 2]

All-order generalization for arbitrary theories

3-loop examples
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. The aim is to remove divergences from the causal LTD expression with a I | 2 =2
method that consists of applying Taylor Expansions of the loop-momenta in I T AT . Y
the UV limit. The expansion is carried out up to logarithmic order and introduces m m,
a new energy scale: the renormalization scale. 20 e 1000
. This method was first developed in Minkowski space and was modified to e T O T
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Euclidean space, to be applied on the LTD expression.

« The expansion is applied to every possible combination of loop momenta, so that o
all simultaneous UV limits of internal lines are removed. First, it is applied to
the single UV limit. Then, single UV-limit counter-terms are subtracted from the : | :
amplitude to calculate multiple UV-limit counter-terms. : J [ l [ j SRS
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Govy A (G’ v fefine fhe replacement rules & I siep 2 scattering amplitudes, based on Causal Loop-Tree Duality [3].
 We extended the method of expansions around the UV-propagator in
A v, = I (ABlsy,. ) Minkowski space [2], through Taylor-like expansions in Euclidean space.
- Appuv = Aftp.iy = Ir (ARgpsils,,, ) * Qur approach is compatible with BPHZ renormalization, and it is a crucial

ingredient to extend Four-Dimensional Unsubtraction (FDU) and Casual

. The loop momenta dependence of the integrand is hidden inside the on-shell Unitarity to higher perturbative orders, local methods based on LTD.

energies of the internal lines.
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