

From Feynman integrals to quantum algorithms: *the LTD connection*

Departamento de Física Fundamental Universidad de Salamanca (USAL)

Prague, 20.07.2024

Index

- 1. Motivation: Loop-Tree Duality
	- A. Geometrical causality
	- B. Cross-section from vacuum
- 2. Quantum algorithms for LTD
	- A. Grover search algorithm
	- B. Hamiltonian formulation

MrVQE

3. Conclusions

(Hamiltonian)

This talk is based on the articles: **2404.05492 [hep-ph], 2404.05491 [hep-ph], 2210.13240 [hep-ph],** 2102.05062 [hep-ph], 2001.03564 [hep-ph]

2. MrVQE

PROBLEM

High-precision calculations require to deal with LOOPS and REAL-EMISSION. Current approaches calculate them separately.

QUESTION Can we do something to combine them?

ANSWER We can use…

PROBLEM

High-precision calculations require to deal with **LOOPS** and **REAL-EMISSION**. Current approaches calculate them separately.

QUESTION

Can we do something to combine them?

ANSWER We can use…

Loop-Tree Duality!

NLO computations in a single slide

Loops contain a virtual particle, not observable **(IR/UV singularities)**

This is the real-radiation, because one extra particle is produced **(IR singularities)**

UV counter-terms Finite result!

- **Main strategy:** iterate Cauchy's theorem to *open loops into trees*
- Energy component is removed by using **Cauchy's residue theorem**
- **Multiloop require to iterate ("nest") the procedure (remove all**

Rodrigo & collaborators, PRL 124 (2020) 21, 211602; JHEP 12 (2019) 163; JHEP 01 (2021) 069; JHEP 02 (2021) 112; JHEP 04 (2021) 129

Causal Reconstruction from graphs

Set of entangled thresholds Products of *k* causal propagators

More details in: JHEP 01

129; JHEP 04 (2021) 183;

(2021) 069; JHEP 04 (2021)

Eur.Phys.J.C 81 (2021) 6, 514

- **Graphical interpretation in terms of entangled thresholds**
	- **1. Each causal** propagator represents a **threshold** of the diagram
	- **2. Each diagram** contains **several thresholds**
	- **3. The causal representation involves products of (***compatible***) thresholds**

Causal Reconstruction from graphs

2 CONFIGURATIONS

arXiv:2102.05062 [hep-ph] & arXiv:2105.08703 [hep-ph]

- *Geometrical rules look into several properties of the graph* **"If the graph can be cut in tree-level pieces (thresholds) with consistent momentum flow (entangled thresholds), then we have a causal representation"**
- **IMPORTANT: Causal configurations MUST FULLFIL the causal-**

compatible flux condition Bootstrapping!!

• **From graph theory:** *"Directed oriented graphs that can be split into binary partitions fulfilling (*) have no closed directed cycles"*

More detailed explanation

Intervity:2102.05062 [hep-ph] & **Non-cyclical configurations = Causal flux**

Causal Reconstruction from graphs

Topologically equivalent diagrams

U **SCAN ME!**

- *Geometrical rules look into several properties of the graph* **"If the graph can be cut in tree-level pieces (thresholds) with consistent momentum flow (entangled thresholds), then we have a causal representation"**
- **IMPORTANT: Causal configurations MUST FULLFIL the causal-**

compatible flux condition Bootstrapping!!

• **Novel technology to compute cross-sections: vacuum diagrams!**

- Applying residue theorem to the causal LTD representation, real, virtual and IR counter-terms are
	- simultaneously generated! **Fully local cancellation of physical singularities!**

Tree-level (eq. 2-loop)

Master formula

$$
d\Gamma_a^{(k)} = \frac{d\Lambda}{2m_a} \sum_{(i_1\cdots i_n a) \in \Sigma} \mathcal{A}_{\mathrm{D}}^{(\Lambda,\mathrm{R})}(i_1 \cdots i_n a) \, \widetilde{\Delta}_{i_1\cdots i_n \bar{a}}
$$

with
$$
\mathcal{A}_{\text{D}}^{(\Lambda)}(i_1 \cdots i_n a) = \text{Res}\left(\frac{x_a}{2} \mathcal{A}_{\text{D}}^{(\Lambda)}, \lambda_{i_1 \cdots i_n a}\right)
$$

the residue of the dual amplitude and the momentum conservation delta:

$$
\breve{\Delta}_{i_1\cdots i_n\bar{a}} = 2\pi \, \delta(\lambda_{i_1\cdots i_n\bar{a}}) \; \text{ where } \; \lambda_{i_1\cdots i_n\bar{a}} = \sum_{s=1}^n q_{i_s,0}^{(+)} - p_{a,0}^{(+)}
$$

More details in Rentería-Estrada's talk (20.07)

9

From Feynman integrals to quantum algorithms: the LTD connection - G. Sborlini (USAL)

PROBLEM

Complex topologies have many causal configurations; it takes "a lot of time" to test all the possibilities.

QUESTION

Can we use other techniques to identify the causal terms?

Quantum Algorithms!

ANSWER We can explore …

> **Quantum Search (Grover)**

Quantum Minimization (VQE)

Quantum Filtering (ongoing)

Clemente et al, PRD 108 (2023) 9, 096035 Sborlini, PRD 104 (2021) 3, 036014

**Clemente et al, PRD 108 (2023) 9, 096035
Sborlini, PRD 104 (2021) 3, 036014**

• Geometrical information is codified in the **adjacency matrix**

Exploit the adjacency matrix to build a Hamiltonian Ground state = Acyclic graph

• **1st approach:** Penalize oriented cycles using projectors to build the **loop Hamiltonian**

• **2nd approach (BETTER):** Promote adjacency matrix to operator, and *trace over all possible cycles*

SCAN ME

Exploit the adjacency matrix to build a Hamiltonian Ground state = Acyclic graph

A few comments:

- **For each cycle**, we have **1 penalization term**
- **0 (1) corresponds to the original (reversed)** direction w.r.t. the starting oriented graph
- Scaling depends on the connectivity of the graph: **lower bound (1) independent on the number of vertices V**

 $H_{\text{Top.C}} = \left[4\pi_0^0 \pi_1^0 \pi_2^0 \pi_3^0\right] + 4\pi_0^1 \pi_1^1 \pi_2^1 \pi_3^1 \right. \\ + \left[3\pi_0^1 \pi_4^1 \pi_5^0\right] + 5\pi_1^0 \pi_2^0 \pi_3^0 \pi_4^1 \pi_5^0 \right. \\ + 3\pi_0^0 \pi_4^0 \pi_5^1$ $+ \overline{5\pi_1^1 \pi_2^1 \pi_3^1 \pi_4^0 \pi_5^1} + 4\pi_0^1 \pi_1^1 \pi_4^1 \pi_6^0 + 4\pi_2^0 \pi_3^0 \pi_4^1 \pi_6^0 + 3\pi_1^1 \pi_5^1 \pi_6^0 + 5\pi_0^0 \pi_2^0 \pi_3^0 \pi_5^1 \pi_6^0$ $+ 4\pi_0^0 \pi_1^0 \pi_4^0 \pi_6^1 + 4\pi_2^1 \pi_3^1 \pi_4^0 \pi_6^1 + 3\pi_1^0 \pi_5^0 \pi_6^1 + 5\pi_0^1 \pi_2^1 \pi_5^1 \pi_6^0 + 5\pi_0^1 \pi_1^1 \pi_2^1 \pi_4^1 \pi_7^0$ $+3\pi_3^0 \pi_4^1 \pi_7^0 + 4\pi_1^1 \pi_2^1 \pi_5^1 \pi_7^0 + 4\pi_0^0 \pi_3^0 \pi_5^1 \pi_7^0 + 3\pi_2^1 \pi_6^1 \pi_7^0 + 5\pi_0^0 \pi_1^0 \pi_3^0 \pi_6^1 \pi_7^0$ $+5\pi_0^0 \pi_1^0 \pi_2^0 \pi_4^0 \pi_7^1 + 3\pi_3^1 \pi_4^0 \pi_7^1 + 4\pi_1^0 \pi_2^0 \pi_5^0 \pi_7^1 + 4\pi_0^1 \pi_3^1 \pi_5^0 \pi_7^1 + 3\pi_2^0 \pi_6^0 \pi_7^1$ $+ 5\pi_0^1 \pi_1^1 \pi_3^1 \pi_6^0 \pi_7^1$

 V_3

More details arXiv:2210.13240 [hep-ph]

- *VQE is a hybrid quantum-classical algorithm, optimized for minimization problems*
- **QUANTUM PART: Evaluation of the Hamiltonian applied to an ansatz (parametrized quantum circuit)**
- **CLASSICAL PART: Modification of the parameters, through minimization algorithms**

From Feynman integrals to quantum algorithms: the LTD connection - G. Sborlini (USAL)

Using a Variational Quantum Eigensolver

- 1. Our implementation with Qiskit: **Real Amplitudes** (ansatz) **+ COBYLA** (optimizer)
- 2. Improved results with **multi-run VQE (MrVQE)**: set a selection **threshold**, collect **solutions** and modify

Two eloop 5 point

Penalization term …

 $H^{(1)} = H^{(0)} + \Pi^{(1)}$

 $|\phi_l\rangle \in S_1$

 $\Pi^{(1)} = \sum b_l^{(1)} |\phi_l\rangle\langle\phi_l|$

… to be added to the Hamiltonian for next run!!

15

- 1. Our implementation with Qiskit: **Real Amplitudes** (ansatz) **+ COBYLA** (optimizer)
- 2. Improved results with **multi-run VQE (MrVQE)**: set a selection **threshold**, collect **solutions** and modify

the Hamiltonian with **penalization terms**

- We collect solutions step by step, till the algorithm converges $($ if <H> >1)
- *Problem:* it is not guaranteed that all the solutions are collected (**work in progress!!**) **IMPROVED!!!**

Clemente et al, PRD 108 (2023) 9, 096035 Sborlini, PRD 104 (2021) 3, 036014

Clemente et al, PRD 108 (2023) 9, 096035
Sborlini, PRD 104 (2021) 3, 036014

- **Nested residues leads to manifestly causal representations** in QFT
- **Geometrical rules** select **entangled thresholds. Complete reconstruction** of multiloop amplitudes!
- **LTD + causality New strategy to compute cross-sections from multi-loop vacuum diagrams** \rightarrow Several loops required (3 loops = 2->2 tree-level process) More details in Rentería-Estrada's talk (20.07)
- **Quantum algorithms** to speed-up **causal flux selection**.
- **VQE** is a promising candidate to **calculate Feynman integrals/amplitudes from minimization problems!**
- **Optimized MrVQE can tackle complicated (several) multiloop diagrams**

17

Sborlini, Phys.Rev.D

104 (2021) 3, 036014

Sborlini, Phys.Rev.D 104 (2021) 3, 036014

• **Causal representation** obtained directly after **summing over all the nested residues**

- **Identify momentum-orderings compatible with causality using Grover's search algorithm.**
- We assign **1 qubit to each edge**, and impose logical conditions to select configurations without closed directed cycles **Non-cyclical configurations = Causal flux**
- **Important: "loop"** refers to **integration variables; "eloop"** to loops in the **graph**

• We use Grover's algorithm to **enhances** the probability of the **causal states**:

$$
U_w = \mathbf{I} - 2|w\rangle\langle w| \qquad U_q = 2|q\rangle\langle q| - \mathbf{I} \qquad (U_q U_w)^t |q\rangle = \cos\theta_t |q_\perp\rangle + \sin\theta_t |w\rangle
$$

Oracle operator (changes sign of causal states)

Diffusion operator (reflects with respect to initial state) with

21