

QCD corrections to Coulomb potential at vanishing transverse momenta

Martin Spousta

Charles University

ICHEP 2024 Prague, 18-24 July 2024

Introduction

Introduction

- Tree-level amplitude leading to Coulomb potential in $q^2 \rightarrow 0$ limit.
- How will the QCD corrections to the photon propagator affect the behavior in $q^2 \rightarrow 0$ limit?

Introduction

- Tree-level amplitude leading to Coulomb potential in $q^2 \rightarrow 0$ limit.
- How will the QCD corrections to the photon propagator affect the behavior in $q^2 \rightarrow 0$ limit?
- For $q^2 \gg 0$, these are local, diverging leading e.g. to running coupling.
- For $q^2 \rightarrow 0$, inter-loop gluon exchanges should be an important source of confining forces [arXiv:1604.08082].
- In many calculations [arXiv:0709.2877, arXiv:1408.5409, ...], $\alpha_{\rm S}(q^2 \rightarrow 0) < 1 =>$ IR behavior can be investigated perturbatively.
- First, investigate amplitudes with 2 loops + multi-gluon exchanges in $q^2 \rightarrow 0$ limit in a systematic way.

n=n'=3 contribution

 $\neq 0 \longrightarrow$ If $u_i^2 = M^2 \neq 0$ (non-abelian case, IR gluon mass [arXiv:2201.09747])

- \bullet Calculations performed using Package-X + tailored Python interface
- •Same limiting results as for n=n'=3
 - => discuss the structure of solution for one particular amplitude

$$n=3, n'=4 \text{ contribution}$$

$$Y_{\mu\nu}(q) = \int \prod_{i} du_{i} A_{\mu,\mu_{1}\cdots\mu_{n-1}}(u_{i},q) B^{\mu_{1}\cdots\mu_{n-1},\nu_{1}\cdots\nu_{n'-1}}(u_{i},q) A'_{\nu,\nu_{1}\cdots\nu_{n'-1}}(u_{i},q)$$

- After performing the contraction due to bosonic fields several thousands terms.
- •Some terms contain scalar product $u_i \cdot u_j$ inside PV coefficients.
- Currently possible to calculate only part of the amplitude with no scalar products:

$$Y_{\mu\nu}^{\text{part}} = g_{\mu\nu} \,\alpha_{\text{s}}^{\frac{5}{2}} \left[\sum_{j=0}^{4} c_{0j} \log^{j} \frac{\mu^{2}}{M^{2}} + \frac{1}{\epsilon} \sum_{j=0}^{3} c_{1j} \log^{j} \frac{\mu^{2}}{M^{2}} + \frac{1}{\epsilon^{2}} \sum_{j=0}^{2} c_{2j} \log^{j} \frac{\mu^{2}}{M^{2}} + \mathcal{O}(\epsilon) \right]$$
$$c_{ij} = c_{ij}(m^{2}, M^{2}, \log(m^{2}/M^{2}), \text{PV}(m, M))$$

•Remarkably $Y_{\mu\nu}^{\text{part}} \neq 0$ for $M^2 \neq 0$. This unexpected **IR finite behavior** can be generalized ...

$$Y_{\mu\nu}^{\text{part}} \sim g_{\mu\nu} \, \alpha_s^{n-1} \left[M^2 (1 + \log M^2 + \log^2 M^2) + \mathcal{O}(M^4) \right] \equiv g_{\mu\nu} \, f_M$$

... that is $Y_{\mu\nu}^{\text{part}} \neq 0$ for $M^2 \neq 0$. Full solution for any n-even is then:

$$Y_{\mu\nu} = \begin{pmatrix} g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2} \end{pmatrix} \begin{pmatrix} f_M(\alpha_{\rm s}, M) + f_{\mathbb{A}}(\alpha_{\rm s}, m, M, q) + f_{\mathbb{N}}(\alpha_{\rm s}, m, M, q) \end{pmatrix}$$

finite analytical function of q non-analytical function of q

- •Need to **resum** these contributions to get full solution.
- We empirically know that these loop interactions give rise to confining forces in the $q^2 \rightarrow 0$ limit which are different than Coulomb interaction => resum them **separately** from free photon propagator in $q^2 \rightarrow 0$ limit.
- Presence of **finite solution** allows to perform this resummation.

- •Need to **resum** these contributions to get full solution.
- We empirically know that these loop interactions give rise to confining forces in the $q^2 \rightarrow 0$ limit which are different than Coulomb interaction => resum them **separately** from free photon propagator in $q^2 \rightarrow 0$ limit.
- Presence of **finite solution** allows to perform this resummation.

$$i\mathcal{M}^{\alpha\beta} = -g^{\alpha\beta} \left(\frac{ia}{q^2} - \frac{1}{f_M(\alpha_{\rm s}, M) + f_{\mathbb{A},0}(\alpha_{\rm s}, m, M) + f_{\mathbb{N}}(\alpha_{\rm s}, m, M, q)} + \mathcal{O}(q) \right)$$

Can be generalized (backup), but sufficient to see for one class of amplitudes.

Sign of the interaction

	Yukawa			electromagnetic			
	ff	$far{f}$		ff	$far{f}$	$f_1^- f_2^+$	$f_{1}^{-}\bar{f}_{2}^{-}$
fermion current	+1	-1		+1	+1	+1	+1
intermediate particle	+1	+1		-1	-1	-1	-1
normal product	-1	+1		-1	+1	-1	-1
charge	+1	+1		+1	+1	-1	+1
(-1) · total	+1	+1		-1	+1	+1	-1

•Sign of Coulomb interaction is **complex** (!)

Sign of the interaction

	Yukawa			"residual"				
	ff	$far{f}$		ff	$far{f}$	$f_1^- f_2^+$	$f_{1}^{-}\bar{f}_{2}^{-}$	
fermion current	+1	-1		+1	+1	+1	+1	
intermediate particle	+1	+1		-1	-1	-1	-1	
normal product	-1	+1		-1	+1	-1	-1	
charge	+1	+1		+1	+1	+1	+1	
summation				-1	-1	-1	-1	
(-1) · total	+1	+1		+1	-1	+1	+1	

• Sign of Coulomb interaction is **complex** (!)

• Probing strongly interacting degrees of freedom in fermion's wave function => electromagnetic charge is irrelevant.

Sign of the interaction

	Yuk	awa		"residual"				
	ff	$far{f}$	ff	$far{f}$	$f_1^- f_2^+$	$f_{1}^{-}\bar{f}_{2}^{-}$		
fermion current	+1	-1	+1	+1	+1	+1		
intermediate particle	+1	+1	-1	-1	-1	-1		
normal product	-1	+1	-1	+1	-1	-1		
charge	+1	+1	+1	+1	+1	+1		
summation			-1	-1	-1	-1		
(-1) · total	+1	+1	+1	-1	+1	+1		

• Sign of Coulomb interaction is **complex** (!)

- Probing strongly interacting degrees of freedom in fermion's wave function => electromagnetic charge is irrelevant.
- Total sign of the "QCD residual interaction": attractive except for fermion-anti-fermion which is repulsive.

Strength of the interaction

•Strength given by the hadronic part of elmg. coupling:

$$\begin{aligned} \alpha(q^2) &= \frac{\alpha_0}{1 - \Delta \alpha(q^2)} = \alpha_0 [1 + \Delta \alpha(q^2)_{\text{had}} + \\ &+ \Delta \alpha(q^2)_{\text{lep}} + \Delta \alpha(q^2)_{\text{top}} + \mathcal{O}(\Delta \alpha^2)] \end{aligned}$$
$$\alpha_0 \Delta \alpha(q^2)_{\text{had}} \equiv a(q^2) \end{aligned}$$

• Magnitude of a can be estimated using **alphaQED** package [arXiv:1905.05078].

• The ratio of a to fine structure constant α_0 is:

$$a / \alpha_0 = 10^{-20}$$
 ... for eV scale
 $a / \alpha_0 = 10^{-26}$... for meV scale

(i.e. not far from the ratio of gravity to elmg. interaction let's say for e^{-})

Where it can act

- Terrestrial experiments have no sensitivity to measure it (20 orders of magnitude smaller than Coulomb force).
- It can play a role in **large-scale astrophysical objects** due a presence of QED plasma in thermal equilibrium, e.g.
 - Intracluster medium (\mathbf{ICM}) in clusters of galaxies
 - Warm ionized medium (WIM) in interstellar space
- Magnitude of residual force in a Debye volume of plasma:

$$\Phi_{\rm deb}(r) = \frac{1}{4\pi\epsilon_0} \frac{e}{r} \exp\left(-\frac{\sqrt{2}r}{\lambda_{\rm D}}\right) \twoheadrightarrow F_{\rm res}(\lambda_{\rm D}) = 2n_i e \int^{\lambda_{\rm D}} \frac{\partial \Phi_{\rm deb}(r)}{\partial r} \mathrm{d}^3 x \Big|_{\alpha_0 \to a(q^2)}$$

• Comparison to gravity within Debye volume:

$$\begin{split} F_{\rm res} &\sim 10^{-40} ~{\rm GeV/fm} & F_{\rm G} \sim 10^{-61} ~{\rm GeV/fm} & \dots ~{\rm for} ~{\rm ICM} \\ F_{\rm res} &\sim 10^{-46} ~{\rm GeV/fm} & F_{\rm G} \sim 10^{-62} ~{\rm GeV/fm} & \dots ~{\rm for} ~{\rm WIM} \end{split}$$

Summary + speculation

- Basic properties of residual interaction:
 - Potential with exact 1/r behavior.
 - Attractive for all fermions except for fermion-anti-fermion.
 - Universal each particle has a hadronic part in its wave function (including e.g. neutrina).
 - Not localized to a single point but has an intrinsic spacial structure for $q^2 \not\rightarrow 0$ (c.f. polarization tensor).
 - Small interaction strength (not completely far from that of gravity).
 - Linear **dependence on mass** (cf. normalization of bispinors backup).
- Speculation: Can this be a new candidate for an **emergent gravity**?
 - Only if virtual photons are universally present unaffected by multipole structure of charged particles.
 - If not, still important for large scale astrophysical objects: ICM, WIM, etc. and possibly a part of DM puzzle.

More information

- For details see EPJP 139 (2024) 5, 374 + publication in preparation
- Little more in the backup

Backup slides

•Why **not to** resum them to the photon propagator? Because we empirically know that they (or their subclass) give rise to confining forces in the $q^2 \rightarrow 0$ limit (which are different than Coulomb force).

 $\alpha_{\rm s}(0)$ I.

$\alpha_s(0)$	IR behavior	Definition	RS	Gauge	Quarks	Framework	References
3.2	freezes	ghgl. vertex	MOM	Landau	Yes	Lattice	[331]
4.45	freezes	ghgl. vertex	MOM	Landau	No	Lattice	[329]
• 0.5	freezes	pQCD form	MOM	Indep.	No	Lattice	[329]
 0.29 ± 0.03 	freezes	Q-Q pot.	V	Indep.	No	Lattice	[212]
• 0.40	freezes	Q-Q pot.	V	Indep.	Yes	Lattice	[212]
3.3 ± 0.7	freezes	ghgl. vertex	(τ)	Landau	No	Lattice $\Lambda = 1.1$	[237]
• 0	vanishes	ghgl. vertex	MOM	Landau	No	Lattice	see caption
• 0	vanishes	ghgl. vertex	MOM	Landau	Yes	Lattice	[264,276]
2.5 ± 0.5	freezes	ghgl., qgl. v.	MOM	Land. Coul.	Yes	Lattice	[258]
• 0.52	freezes	Q-Q pot.	V	Indep.	Yes	Lat. pert. stoch. th.	[338]
diverges	$e^{m/Q}$	Schrod. func.	MS	-	Yes	Lattice	[341]
2.97	freezes	ghgl. vertex	-	indep.	Yes	Stoch. Quant.	[244,348]
∞	$1/Q^{2}$	pQCD form	V	Coulomb	Yes	Variational ap.	[163]
• 0.71	freezes	pQCD form	MS	Indep.	Yes	Pheno.	[222]
∞	$1/Q^{2}$	pQCD form	V	Indep.	Yes	Pheno.	[294]
• 0.58	freezes	pQCD form	V	Indep.	Yes	Pheno.	[221],
∞	$1/Q^{2}$	pQCD form	MS	Indep.	Yes	Pheno.	[226]
 0.42 ± 0.03 	(Av. IR val.)	pQCD form	-	Indep.	Yes	Pheno.	[206]
● ≃0.6	freezes	pQCD form	_	Indep.	Yes	Pheno.	[206]

A. Deur et al., Prog. Part. Nucl. Phys. 90 (2016) 1–74 [arXiv:1604.08082] 23 out of 39 papers in the review suggest $0 \le \alpha_s(0) < 1$.

$\alpha_{\rm s}(0)$ II.

$\alpha_s(0)$	IR behavior	Definition	RS	Gauge	Quarks	Framework	References
• 0.78	mono. incr.	pQCD form	MS	Indep.	Yes	Pheno.	[374]
•0.60	freezes	pQCD form	(\overline{MS})	Indep.	Yes	Pheno. $\Lambda = 0.2$	[219]
0.82	freezes	pQCD form	(\overline{MS})	Indep.	Yes	Pheno.	[292]
diverges	$1/Q^{2}$	pQCD form	V	Indep.	Yes	Pheno.	[224]
0.83	freezes	pQCD form	_	Indep.	Yes	Pheno.	[220]
• 0.83	freezes	α_R	Indep.	Indep.	Yes	Opt. Pert. Theo.	[388]
1.77	freezes	ghgl. vertex	MS, MOM	Landau	Yes	Gribov–Zwanziger	[351,214]
7.7 ± 2	freezes	_	-	Landau	No	FRG	[343]
2.97	freezes	ghgl. vertex	_	Landau	No	FRG	[257]
${\sim}4$	freezes	-	Indep.	Indep.	Yes	Analytic Ap. $\Lambda = 0.56$	[166]
1.25	mono. decr.	-	(\overline{MS})	Indep.	Yes	Analytic Ap. $\Lambda = 0.32$	[362,359]
diverges	$1/Q^{2}$	-	Indep.	Indep.	Yes	Analytic Approach	[368,377]
• 0.47	freezes	-	Indep.	Indep.	Yes	Analytic Approach	[378]
0.37-0.60	freezes	pQCD form	MS	Indep.	No	BPT	[218,386]
0.81	freezes	pQCD form	V	Indep.	Yes	BPT	[45]
●0.97 ± 0.44	freezes	pQCD form	V	Indep.	Yes	BPT	[45,387]
●0.50 ± 0.08	freezes	pQCD form	MS	indep.	Yes	duality.	[389]
•0	vanishes	ghgl. vertex	-	-	No	ϕ^4 -YM mapping	[390]
•0	vanishes	pQCD form	MS	indep.	No	Bogoliubov comp.	[170]
• 0	vanishes	pQCD form	\overline{MS}	Landau	Yes	Curci-Ferrari Model	[392]

A. Deur et al., Prog. Part. Nucl. Phys. 90 (2016) 1–74 [arXiv:1604.08082] 23 out of 39 papers in the review suggest $0 \le \alpha_s(0) < 1$.

Normalization

• Coulomb case. Full amplitude, including also initial and final state description

$$i\mathcal{M} = \frac{-ie^2}{4\pi\epsilon_0\hbar c} \frac{1}{|\mathbf{q}|^2} (2m{\xi'}^{\dagger}\xi)_p (2m{\xi'}^{\dagger}\xi)_k$$

• Non-relativistic Born approximation:

$$\langle p'|iT|p\rangle = -i\tilde{\mathcal{V}}(\mathbf{q})\left(2\pi\right)\delta(E_{p'}-E_p)$$

• Mass factors (and $\hbar c$) in relativistic amplitude dropped manually to match non-relativistic conventions.

Open questions

- Can implementing such attractive force into **astrophysical simulations** help with interpretation of the data? Could it be a part of the dark matter puzzle?
- Can we prove that this force is not an **emergent gravity**?
- Can we improve on the **magnitude of hadronic part** of α_0 at (m)eV scales to have better estimates strength of the force (e.g. using lattice QCD)?

Open questions

- Can implementing such attractive force into **astrophysical simulations** help with interpretation of the data? Could it be a part of the dark matter puzzle?
- Can we prove that this force is not an **emergent gravity**?
- Can we improve on the **magnitude of hadronic part** of α_0 at (m)eV scales to have better estimates strength of the force (e.g. using lattice QCD)?