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Introduction
Tree-level amplitude leading to Coulomb potential in q 2 → 0 limit.
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Introduction
Tree-level amplitude leading to Coulomb potential in q 2 → 0 limit.
How will the QCD corrections to the photon propagator affect the behavior in q 2 → 0 limit?
For q 2 ≫ 0, these are local, diverging leading e.g. to running coupling.
For q 2 → 0, inter-loop gluon exchanges should be an important source of confining forces [arXiv:1604.08082].
In many calculations [arXiv:0709.2877, arXiv:1408.5409, …],α S(q 2 → 0) < 1 => IR behavior can be investigated perturbatively.
First, investigate amplitudes with 2 loops + multi-gluon exchanges in q 2 → 0 limit in a systematic way.

https://arxiv.org/abs/1604.08082
https://arxiv.org/abs/0709.2877
https://arxiv.org/abs/1408.5409
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General structure of amplitude

n-point quark loop bosonic exchanges

non-abelian case
abelian case(for reference)

n’-point quark loop
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n=n’=3 contribution

= 0 Furry’s theoremIf u i2 = M 2 = 0 (abelian case)

non-abelian case
abelian case

≠ 0 If u i2 = M 2 ≠ 0 (non-abelian case, IR gluon mass [arXiv:2201.09747])

https://arxiv.org/abs/2201.09747
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n=3, n’=3,4 contribution

Calculations performed using Package-X + tailored Python interface
Same limiting results as for n=n’=3=> discuss the structure of solution for one particular amplitude 

non-abelian only
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n=3, n’=4 contribution
After performing the contraction due to bosonic fields – several thousands terms.
Some terms contain scalar product u i ·u j insidePV coefficients.
Currently possible to calculate only part of the amplitudewith no scalar products:

Remarkably Yμν   ≠ 0 for M 2 ≠ 0. This unexpected IR finite behaviorcan be generalized … part
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Generalized partial solution
… for any n-even 
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… for any n-even
Generalized partial solution

      … that is Yμν   ≠ 0 for M 2 ≠ 0. Full solution for any n-even is then: part

finite analytical function of q non-analytical function of q
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Full solution: resummation
Need to resum these contributions to get full solution.
We empirically know that these loop interactions give rise to confining forces in the q 2 → 0 limit which are different than Coulomb interaction => resum them separately from free photon propagator in q 2 → 0 limit.
Presence of finite solution allows to perform this resummation.
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Full solution: resummation

⇔→

 q 2 → 0
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Full solution: resummation

⇔→

 q 2 → 0
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Full solution: resummation
Change in the sign wrtCoulomb interaction Exact 1/r behavior of resulting potential: 

– due to the presence of 𝒇M ,𝒇ℕ can have any q 2 behaviorand any μ 2 dependence
– no 1/r k corrections to 1/r 

Can be generalized (backup), but sufficient to see for one class of amplitudes. 
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Sign of the interaction
Sign of Coulomb interaction is complex (!)
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Sign of Coulomb interaction is complex (!)
Probing strongly interacting degrees of freedom in fermion’s wave function => electromagnetic charge is irrelevant. 

“           ”
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Sign of the interaction
Sign of Coulomb interaction is complex (!)
Probing strongly interacting degrees of freedom in fermion’s wave function => electromagnetic charge is irrelevant. 
Total sign of the “QCD residual interaction”:attractive except for fermion-anti-fermion which is repulsive.  

“           ”
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Strength of the interaction
Strength given by the hadronic part of elmg. coupling:

Magnitude of 𝑎 can be estimated using alphaQED package [arXiv:1905.05078].
The ratio of 𝑎 to fine structure constant α 0 is:𝑎 /α 0 = 10-20   … for eV scale𝑎 /α 0 = 10-26   … for meV scale(i.e. not far from the ratio of gravity to elmg. interaction let’s say for e--)  

http://www-com.physik.hu-berlin.de/~fjeger/software.html
https://arxiv.org/abs/1905.05078
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Where it can act
Terrestrial experiments have no sensitivity to measure it (20 orders of magnitude smaller than Coulomb force).
It can play a role in large-scale astrophysical objects due a presence of QED plasma in thermal equilibrium, e.g. 

– Intracluster medium (ICM) in clusters of galaxies 
– Warm ionized medium (WIM) in interstellar space 

Magnitude of residual force in a Debye volume of plasma: 
Comparison to gravity within Debye volume:Fres ~ 10-40 GeV/fm FG ~ 10-61 GeV/fm … for ICMFres ~ 10-46 GeV/fm FG ~ 10-62 GeV/fm … for WIM
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Summary + speculation
Basic properties of residual interaction:

– Potential with exact 1/r behavior.
– Attractive for all fermions except for fermion-anti-fermion.
– Universal – each particle has a hadronic part in its wave function (including e.g. neutrina).
– Not localized to a single point but has an intrinsic spacial structure for q 2 ↛ 0 (c.f. polarization tensor).
– Small interaction strength (not completely far from that of gravity). 
– Linear dependence on mass (cf. normalization of bispinors – backup).   

Speculation: Can this be a new candidate for an emergent gravity?
– Only if virtual photons are universally present unaffected by multipole structure of charged particles.
– If not, still important for large scale astrophysical objects:ICM, WIM, etc. and possibly a part of DM puzzle.
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More information
For details see EPJP 139 (2024) 5, 374 + publication in preparation
Little more in the backup

https://arxiv.org/abs/2212.11667
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Backup slides
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Generalization

Why not to resum them to the photon propagator? Because we empirically know that they (or their subclass) give rise to confining forces in the q 2 → 0 limit (which are different than Coulomb force).

→
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α s(0) I.

A. Deur et al., Prog. Part. Nucl. Phys. 90 (2016) 1–74 [ arXiv:1604.08082 ]23 out of 39 papers in the review suggest 0 ≤ α S(0) < 1.

https://arxiv.org/abs/1604.08082
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α s(0) II.

A. Deur et al., Prog. Part. Nucl. Phys. 90 (2016) 1–74 [ arXiv:1604.08082 ]23 out of 39 papers in the review suggest 0 ≤ α S(0) < 1.

https://arxiv.org/abs/1604.08082
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Normalization
Coulomb case. Full amplitude, including also initial and final state description
Non-relativistic Born approximation:
Mass factors (and ℏc) in relativistic amplitude dropped manually to matchnon-relativistic conventions.
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Open questions
Can implementing such attractive force into astrophysical simulations help with interpretation of the data? Could it be a part of the dark matter puzzle?
Can we prove that this force is not an emergent gravity?
Can we improve on the magnitude of hadronic part of α 0  at (m)eV scales  to have better estimates strength of the force (e.g. using lattice QCD)?
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