

Technische Universität München

Renormalization Group Equations for the Dim-7 SMEFT Operators

Di Zhang (张迪) Technical University of Munich

Based on DZ, JHEP 10 (2023) 148; JHEP 02 (2024) 133

The 42nd International Conference on High Energy Physics Prague, Czech Republic 19 July 2024

9 The SMEFT and Operator Basis

The Standard Model Effective Field Theory

The Standard Model Effective Field Theory

The energy scale of new physics (NP) is much larger than the electroweak (EW) scale

- > Indirectly and model-independently investigate the low-energy consequences of NP
- Simply improve the quality of the convergence of perturbation theory with multiple physical scales via matching and RG running
- Reduce repeated calculations for different UV models: running and mapping only need to be done once in the SMEFT, though matching differs for UV models.

The Standard Model Effective Field Theory

The energy scale of new physics (NP) is much larger than the electroweak (EW) scale

- > Indirectly and model-independently investigate the low-energy consequences of NP
- Simply improve the quality of the convergence of perturbation theory with multiple physical scales via matching and RG running
- Reduce repeated calculations for different UV models: running and mapping only need to be done once in the SMEFT, though matching differs for UV models.

Original "Basis" for dim-7 operators:

L. Lehman, 2014

	$\psi^2 H^4 + \text{h.c.}$	$\psi^2 H^3 D$ + h.c.			
\mathscr{O}_{LH}	$arepsilon_{ij}arepsilon_{mn}(L^iCL^m)H^jH^n(H^\dagger H)$	\mathcal{O}_{LeHD}	$arepsilon_{ij}arepsilon_{mn}(L^iC\gamma_\mu e)H^jH^miD^\mu H^n$		
	$\psi^2 H^2 D^2 + \text{h.c.}$		$\psi^2 H^2 X + \text{h.c.}$		
\mathcal{O}_{LHD1}	$\epsilon_{ij}\epsilon_{mn}(L^iCD^\mu L^j)H^m(D_\mu H^n)$	\mathscr{O}_{LHB}	$arepsilon_{ij}arepsilon_{mn}(L^iC\sigma_{\mu u}L^m)H^jH^nB^{\mu u}$		
\mathcal{O}_{LHD2}	$arepsilon_{im}arepsilon_{jn}(L^iCD^\mu L^j)H^m(D_\mu H^n)$	\mathscr{O}_{LHW}	$arepsilon_{ij}(arepsilon au^{I})_{mn}(L^iC\sigma_{\mu u}L^m)H^jH^nW^{I\mu u}$		
	$\psi^4 D + ext{h.c.}$	$\psi^4 H$ + h.c.			
$\mathscr{O}_{\bar{d}uLLD}$	$arepsilon_{ij}(ar{d}\gamma_\mu u)(L^iCiD^\mu L^j)$	$\mathscr{O}_{ar{e}LLLH}$	$oldsymbol{arepsilon}_{ij}oldsymbol{arepsilon}_{mn}(ar{e}L^i)(L^jCL^m)H^n$		
$\mathscr{O}_{ar{L}QddD}$	$(ar{L}\gamma_\mu Q)(dCiD^\mu d)$	$\mathscr{O}_{\bar{d}LQLH1}$	$arepsilon_{ij}arepsilon_{mn}(ar{d}L^i)(Q^jCL^m)H^n$		
$\mathscr{O}_{ar{e}dddD}$	$(ar{e}\gamma_\mu d)(dCiD^\mu d)$	$\mathcal{O}_{\bar{d}LQLH2}$	$arepsilon_{im}arepsilon_{jn}(ar{d}L^i)(Q^jCL^m)H^n$		
		$\mathcal{O}_{\bar{d}LueH}$	$m{arepsilon}_{ij}(ar{d}L^i)(uCe)H^j$		
		$\mathscr{O}_{ar{Q}uLLH}$	$arepsilon_{ij}(ar{Q}u)(LCL^i)H^j$		
		$\mathscr{O}_{ar{L}dud ilde{H}}$	$(ar{L}d)(uCd) ilde{H}$		
		$\mathscr{O}_{ar{L}dddH}$	$(\bar{L}d)(dCd)H$		
		$\mathscr{O}_{ar{e}Qdd ilde{H}}$	$arepsilon_{ij}(ar e Q^i)(dCd) ilde H^j$		
		$\mathscr{O}_{ar{L}dQQ ilde{H}}$	$m{arepsilon}_{ij}(ar{L}d)(QCQ^i) ilde{H}^j$		
$\mathscr{O}_{\bar{d}uLLD}^{(2)}$	$\varepsilon_{ij}(\bar{d}\gamma_{\mu}u)(L^iC\sigma^{\mu\nu}D_{\nu}L^j)$	$\mathscr{O}_{ar{L}dQdD}$	$(\bar{L}iD^{\mu}d)(QC\gamma_{\mu}d)$		

 $\psi_1 C \psi_2 \equiv \overline{\psi_1^{\rm c}} \psi_2$

Original "Basis" for dim-7 operators:

L. Lehman, 2014

	$\psi^2 H^4 + ext{h.c.}$		$\psi^2 H^3 D$ + h.c.			
\mathscr{O}_{LH}	$arepsilon_{ij}arepsilon_{mn}(L^iCL^m)H^jH^n(H^\dagger H)$	\mathcal{O}_{LeHD}	$arepsilon_{ij}arepsilon_{mn}(L^iC\gamma_\mu e)H^jH^miD^\mu H^n$			
	$\psi^2 H^2 D^2 + \text{h.c.}$		$\psi^2 H^2 X + \text{h.c.}$			
\mathcal{O}_{LHD1}	$arepsilon_{ij}arepsilon_{mn}(L^iCD^\mu L^j)H^m(D_\mu H^n)$	\mathscr{O}_{LHB}	$\varepsilon_{ij}\varepsilon_{mn}(L^iC\sigma_{\mu u}L^m)H^jH^nB^{\mu u}$			
\mathcal{O}_{LHD2}	$arepsilon_{im}arepsilon_{jn}(L^iCD^\mu L^j)H^m(D_\mu H^n)$	\mathcal{O}_{LHW}	$arepsilon_{ij}(arepsilon au^I)_{mn}(L^iC\sigma_{\mu u}L^m)H^jH^nW^{I\mu u}$			
	$\psi^4 D + ext{h.c.}$	$\psi^4 H + { m h.c.}$				
$\mathscr{O}_{\bar{d}uLLD}$	$arepsilon_{ij}(ar{d}\gamma_\mu u)(L^iCiD^\mu L^j)$	$\mathscr{O}_{\bar{e}LLLH}$	$oldsymbol{arepsilon}_{ij} oldsymbol{arepsilon}_{mn} (ar{e}L^i) (L^j C L^m) H^n$			
$\mathscr{O}_{ar{L}QddD}$	$(ar{L}\gamma_\mu Q)(dCiD^\mu d)$	$\mathscr{O}_{\bar{d}LQLH1}$	$arepsilon_{ij}arepsilon_{mn}(ar{d}L^i)(Q^jCL^m)H^n$			
$\mathscr{O}_{\bar{e}dddD}$	$(ar{e}\gamma_\mu d)(dCiD^\mu d)$	$\mathscr{O}_{\bar{d}LQLH2}$	$arepsilon_{im}arepsilon_{jn}(ar{d}L^i)(Q^jCL^m)H^n$			
		$\mathscr{O}_{\bar{d}LueH}$	$m{arepsilon}_{ij}(ar{d}L^i)(uCe)H^j$			
		$\mathscr{O}_{ar{Q}uLLH}$	$arepsilon_{ij}(ar{Q}u)(LCL^i)H^j$			
		$\mathscr{O}_{ar{L}dud ilde{H}}$	$(\bar{L}d)(uCd) ilde{H}$			
		$\mathscr{O}_{ar{L}dddH}$	$(\bar{L}d)(dCd)H$			
		$\mathscr{O}_{ar{e}Qdd ilde{H}}$	$arepsilon_{ij}(ar e Q^i)(dCd) ilde H^j$			
		$\mathscr{O}_{ar{L}dQQ ilde{H}}$	$arepsilon_{ij}(ar{L}d)(QCQ^i) ilde{H}^j$			
	1					
$\mathscr{O}^{(2)}_{ar{d}uLLD}$	$\varepsilon_{ij}(\bar{d}\gamma_{\mu}u)(L^iC\sigma^{\mu\nu}D_{\nu}L^j)$	$\mathscr{O}_{ar{L}dQdD}$	$(\bar{L}iD^{\mu}d)(QC\gamma_{\mu}d)$			

 $\psi_1 C \psi_2 \equiv \overline{\psi_1^{\rm c}} \psi_2$

Modified "Basis" : remove two redundant operators

Y. Liao, X. D. Ma, 2016

$$\mathcal{O}_{\bar{d}uLLD}^{(2)prst} = 2(Y_e)_{tu}\mathcal{O}_{\bar{d}LueH}^{psru} - \mathcal{O}_{\bar{d}uLLD}^{prst}$$

$$\mathscr{O}_{\bar{L}QddD}^{prst} = \left(Y_d^{\dagger}\right)_{tu} \mathscr{O}_{\bar{L}dQQ\tilde{H}}^{psru} + \mathscr{O}_{\bar{L}dQdD}^{ptrs}.$$

Original "Basis" for the SMEFT dim-7 operators: L. Lehman, 2014

		$\psi^2 H^4 + \text{h.c.}$	$\psi^2 H^3 D$ + h.c.			
	$\mathscr{O}_{L\!H}$	$arepsilon_{ij}arepsilon_{mn}(L^iCL^m)H^jH^n(H^\dagger H)$	\mathcal{O}_{LeHD}	$arepsilon_{ij}arepsilon_{mn}(L^iC\gamma_\mu e)H^jH^miD^\mu H^n$		
		$\psi^2 H^2 D^2 + \text{h.c.}$		$\psi^2 H^2 X + \text{h.c.}$		
	\mathcal{O}_{LHD1}	$arepsilon_{ij}arepsilon_{mn}(L^iCD^\mu L^j)H^m(D_\mu H^n)$	\mathscr{O}_{LHB}	$arepsilon_{ij}arepsilon_{mn}(L^iC\sigma_{\mu u}L^m)H^jH^nB^{\mu u}$		
No	\mathscr{O}_{LHD2}	$arepsilon_{im}arepsilon_{jn}(L^iCD^\mu L^j)H^m(D_\mu H^n)$	\mathscr{O}_{LHW}	$arepsilon_{ij}(arepsilon au^{I})_{mn}(L^{i}C\sigma_{\mu u}L^{m})H^{j}H^{n}W^{I\mu u}$		
Non-trivial flavor relations		$\psi^4 D$ + h.c.		$\psi^4 H$ + h.c.		
	$\mathscr{O}_{\bar{d}uLLD}$	$arepsilon_{ij}(ar{d}\gamma_\mu u)(L^iCiD^\mu L^j)$	$\mathscr{O}_{\bar{e}LLLH}$	$oldsymbol{arepsilon}_{ij}oldsymbol{arepsilon}_{mn}(ar{e}L^i)(L^jCL^m)H^n$		
	$\mathscr{O}_{ar{L}QddD}$	$(ar{L}\gamma_\mu Q)(dCiD^\mu d)$	$\mathscr{O}_{\bar{d}LQLH1}$	$arepsilon_{ij}arepsilon_{mn}(ar{d}L^i)(Q^jCL^m)H^n$		
	$\mathscr{O}_{\bar{e}dddD}$	$(ar{e}\gamma_\mu d)(dCiD^\mu d)$	$\mathscr{O}_{\bar{d}LQLH2}$	$arepsilon_{im}arepsilon_{jn}(ar{d}L^i)(Q^jCL^m)H^n$		
			$\mathscr{O}_{\bar{d}LueH}$	$arepsilon_{ij}(ar{d}L^i)(uCe)H^j$		
			$\mathscr{O}_{ar{Q}uLLH}$	$arepsilon_{ij}(ar{Q}u)(LCL^i)H^j$		
			$\mathscr{O}_{ar{L}dud ilde{H}}$	$(\bar{L}d)(uCd)\tilde{H}$		
			$\mathscr{O}_{ar{L}dddH}$	$(\bar{L}d)(dCd)H$		
			$\mathscr{O}_{ar{e}Qdd ilde{H}}$	$arepsilon_{ij}(ar e Q^i)(dCd) ilde H^j$		
			$\mathscr{O}_{ar{L}dQQ ilde{H}}$	$arepsilon_{ij}(ar{L}d)(QCQ^i) ilde{H}^j$		
	$\mathscr{O}^{(2)}_{ar{d}uLLD}$	$\varepsilon_{ij}(\bar{d}\gamma_{\mu}u)(L^iC\sigma^{\mu\nu}D_{\nu}L^j)$	$\mathscr{O}_{ar{L}dQdD}$	$(ar{L}iD^{\mu}d)(QC\gamma_{\mu}d)$		

 $\psi_1 C \psi_2 \equiv \overline{\psi_1^{\rm c}} \psi_2$

Modified "Basis" : remove two redundant operators

Y. Liao, X. D. Ma, 2016

$$\mathscr{O}_{\bar{d}uLLD}^{(2)prst} = 2(Y_e)_{tu} \mathscr{O}_{\bar{d}LueH}^{psru} - \mathscr{O}_{\bar{d}uLLD}^{prst} \qquad \qquad \mathscr{O}_{\bar{L}QddD}^{prst} = \left(Y_d^{\dagger}\right)_{tu} \mathscr{O}_{\bar{L}dQQ\tilde{H}}^{psru} + \mathscr{O}_{\bar{L}dQdD}^{ptrs}.$$

The story continues...

Non-trivial flavor relations: appear first at dimension seven

Y. Liao, X. D. Ma, 2019

Class	Operator	Flavor relations	
$\psi^2 H^4$	\mathcal{O}_{LH}	$\mathcal{O}_{LH}^{pr} - p \leftrightarrow r = 0$	
$\psi^2 H^3 D$	\mathcal{O}_{LeHD}	×	
$\psi^2 H^2 D^2$	\mathcal{O}_{LHD1}	$(\mathcal{O}_{LDH1}^{pr} + \mathcal{K}^{pr}) - p \leftrightarrow r = 0$	Operators with covariant
	\mathcal{O}_{LHD2}	$\left[4\mathcal{O}_{LHD2}^{pr} + 2(Y_e)_{rv}\mathcal{O}_{LeHD}^{pv} - \mathcal{O}_{LHW}^{pr} + 2\mathcal{K}^{pr}\right] - p \leftrightarrow r = \mathcal{O}_{LHB}^{pr}$	derivative and repeated
$\psi^2 H^2 X$	\mathcal{O}_{LHB}	$\mathcal{O}_{LHB}^{pr} + p \leftrightarrow r = 0$	
	\mathcal{O}_{LHW}	×	fermion fields
$\psi^4 H$	$\mathcal{O}_{ar{e}LLLH}$	$(\mathcal{O}^{prst}_{\bar{e}LLLH} + r \leftrightarrow t) - r \leftrightarrow s = 0$	
	$\mathcal{O}_{ar{d}LQLH1}$	×	
	$\mathcal{O}_{ar{d}LQLH2}$	×	Induced by the FeMs
	$\mathcal{O}_{ar{d}LueH}$	×	Induced by the EoMs
	$\mathcal{O}_{ar{Q}uLLH}$	×	
$\psi^4 D$	$\mathcal{O}_{ar{d}uLLD}$	$\left[\mathcal{O}_{ar{d}uLLD}^{prst} + (Y_d)_{vp} \mathcal{O}_{ar{Q}uLLH}^{vrst} - (Y_u^\dagger)_{rv} \mathcal{O}_{ar{d}LQLH2}^{psvt} ight] - s \leftrightarrow t = 0$	
$\psi^4 H$	$\mathcal{O}_{ar{L}dud ilde{H}}$	×	Not all degrees of
	${\cal O}_{ar L dddH}$	$\mathcal{O}_{ar{L}dddH}^{prst}+s \leftrightarrow t=0, \mathcal{O}_{ar{L}dddH}^{prst}+\mathcal{O}_{ar{L}dddH}^{pstr}+\mathcal{O}_{ar{L}dddH}^{ptrs}=0$	
	$\mathcal{O}_{ar{e}Qdd ilde{H}}$	$\mathcal{O}^{prst}_{ar{e}Qdd ilde{H}}+s \leftrightarrow t=0$	freedom in operators
	${\cal O}_{ar{L}dQQ ilde{H}}$	×	are independent
$\psi^4 D$	$\mathcal{O}_{ar{L}QddD}$	$\left[\mathcal{O}_{\bar{L}QddD}^{prst} + (Y_u)_{rv}\mathcal{O}_{\bar{L}dud\tilde{H}}^{psvt}\right] - s \leftrightarrow t = -(Y_e^{\dagger})_{vp}\mathcal{O}_{\bar{e}Qdd\tilde{H}}^{vrst} - (Y_d)_{rv}\mathcal{O}_{\bar{L}dddH}^{pvst}$	-
	$\mathcal{O}_{ar{e}dddD}$	$\mathcal{O}^{prst}_{ar{e}dddD} - r \leftrightarrow s = (Y^{\dagger}_d)_{tv} \mathcal{O}^{pvrs}_{ar{e}Qdd ilde{H}}$	
		$(\mathcal{O}_{ar{e}dddD}^{prst} + r \leftrightarrow t) - s \leftrightarrow t = (Y_e)_{vp} \mathcal{O}_{ar{L}dddH}^{vrst}$	

Table 2. Flavor relations for dim-7 operators. The symbol \times indicates lack of such a relation.

$$\mathcal{K}^{pr} = (Y_u)_{vw} \mathcal{O}_{\bar{Q}uLLH}^{vwpr} - (Y_d^{\dagger})_{vw} \mathcal{O}_{\bar{d}LQLH2}^{vpwr} - (Y_e^{\dagger})_{vw} \mathcal{O}_{\bar{e}LLLH}^{vwpr}$$

A physical basis gets rid of all redundant degrees of freedom: Y. Liao, X. D. Ma, 2019

in the basis: for the subset L = 2, B = 0,

$$\frac{1}{2} \left(\mathcal{O}_{LH}^{pr} + \mathcal{O}_{LH}^{rp} \right), \quad \mathcal{O}_{LeHD}^{pr}, \quad \frac{1}{2} \left(\mathcal{O}_{LHD1}^{pr} + \mathcal{O}_{LHD1}^{rp} \right), \quad \frac{1}{2} \left(\mathcal{O}_{LHD2}^{pr} + \mathcal{O}_{LHD2}^{rp} \right), \quad \frac{1}{2} \left(\mathcal{O}_{LHB}^{pr} - \mathcal{O}_{LHB}^{rp} \right), \\
\mathcal{O}_{LHW}^{pr}, \quad \mathcal{O}_{\bar{d}LQLH1}^{prst}, \quad \mathcal{O}_{\bar{d}LQLH2}^{prst}, \quad \mathcal{O}_{\bar{d}LueH}^{prst}, \quad \mathcal{O}_{\bar{Q}uLLH}^{prst}, \quad \frac{1}{2} \left(\mathcal{O}_{\bar{d}uLLD}^{prst} + \mathcal{O}_{\bar{d}uLLD}^{prst} \right), \\
\frac{1}{4} \left(\mathcal{O}_{\bar{e}LLLH}^{prst} + \mathcal{O}_{\bar{e}LLLH}^{ptsr} + \mathcal{O}_{\bar{e}LLLH}^{ptrs} + \mathcal{O}_{\bar{e}LLLH}^{ptrs} \right) \text{ (with at least two of } r, s, t \text{ being equal),} \\
\mathcal{O}_{\bar{e}LLLH}^{prst}, \quad \mathcal{O}_{\bar{e}LLLH}^{prts}, \quad \mathcal{O}_{\bar{e}LLLH}^{psrt}, \quad \mathcal{O}_{\bar{e}LLH}^{psrt}, \quad \mathcal{O}_{\bar{e}LLLH}^{psrt}, \quad \mathcal{O}_{\bar{e}LLLH}^{psrt}, \quad \mathcal{O}_{\bar{e}LLH}^{psrt}, \quad \mathcal{O}_{\bar{e}LLLH}^{psrt}, \quad \mathcal{O}_{\bar{e}LLLH}^{psrt}, \quad \mathcal{O}_{\bar{e}LLLH}^{psrt}, \quad \mathcal{O}_{\bar{e}LLH}^{psrt}, \quad \mathcal{O}_{\bar{e}L}^{psrt}, \quad \mathcal{O}_{\bar{e}LLH}^{psrt}, \quad \mathcal{O}_{\bar{e}L}^{psrt}, \quad \mathcal{O}_{\bar{e}L}^{psrt$$

and for the subset B = -L = 1,

$$\mathcal{O}_{\bar{L}dud\tilde{H}}^{prst}, \quad \frac{1}{2} \left(\mathcal{O}_{\bar{e}Qdd\tilde{H}}^{prst} - \mathcal{O}_{\bar{e}Qdd\tilde{H}}^{prts} \right), \quad \mathcal{O}_{\bar{L}dQQ\tilde{H}}^{prst}, \quad \frac{1}{2} \left(\mathcal{O}_{\bar{L}QddD}^{prst} + \mathcal{O}_{\bar{L}QddD}^{prts} \right), \\ \frac{1}{2} \left(\mathcal{O}_{\bar{L}dddH}^{prst} - \mathcal{O}_{\bar{L}dddH}^{prts} \right) \text{ (with at least two of } r, s, t \text{ being equal}), \\ \mathcal{O}_{\bar{L}dddH}^{prst}, \quad \mathcal{O}_{\bar{L}dddH}^{pstr} \text{ (for } r < s < t), \quad \frac{1}{6} \left(\mathcal{O}_{\bar{e}dddD}^{prst} + 5 \text{ permutations of } (r, s, t) \right), \quad (2.4)$$

A physical basis gets rid of all redundant degrees of freedom: Y. Liao, X. D. Ma, 2019

in the basis: for the subset L = 2, B = 0,

$$\frac{1}{2} \left(\mathcal{O}_{LH}^{pr} + \mathcal{O}_{LH}^{rp} \right), \quad \mathcal{O}_{LeHD}^{pr}, \quad \frac{1}{2} \left(\mathcal{O}_{LHD1}^{pr} + \mathcal{O}_{LHD1}^{rp} \right), \quad \frac{1}{2} \left(\mathcal{O}_{LHD2}^{pr} + \mathcal{O}_{LHD2}^{rp} \right), \quad \frac{1}{2} \left(\mathcal{O}_{LHB}^{pr} - \mathcal{O}_{LHB}^{rp} \right), \\
\mathcal{O}_{LHW}^{pr}, \quad \mathcal{O}_{\bar{d}LQLH1}^{prst}, \quad \mathcal{O}_{\bar{d}LQLH2}^{prst}, \quad \mathcal{O}_{\bar{d}LueH}^{prst}, \quad \mathcal{O}_{\bar{Q}uLLH}^{prst}, \quad \frac{1}{2} \left(\mathcal{O}_{\bar{d}uLLD}^{prst} + \mathcal{O}_{\bar{d}uLLD}^{prst} \right), \\
\frac{1}{4} \left(\mathcal{O}_{\bar{e}LLLH}^{prst} + \mathcal{O}_{\bar{e}LLLH}^{ptsr} + \mathcal{O}_{\bar{e}LLLH}^{psrt} + \mathcal{O}_{\bar{e}LLLH}^{ptrs} \right) \text{ (with at least two of } r, s, t \text{ being equal),} \\
\mathcal{O}_{\bar{e}LLLH}^{prst}, \quad \mathcal{O}_{\bar{e}LLLH}^{prst}, \quad \mathcal{O}_{\bar{e}LLLH}^{psrt}, \quad \mathcal{O}_{\bar{e}LLLH}^{psrt} \text{ (for } r < s < t),$$
(2.3)

and for the subset B = -L = 1,

$$\mathcal{O}_{\bar{L}dud\tilde{H}}^{prst}, \quad \frac{1}{2} \left(\mathcal{O}_{\bar{e}Qdd\tilde{H}}^{prst} - \mathcal{O}_{\bar{e}Qdd\tilde{H}}^{prts} \right), \quad \mathcal{O}_{\bar{L}dQQ\tilde{H}}^{prst}, \quad \frac{1}{2} \left(\mathcal{O}_{\bar{L}QddD}^{prst} + \mathcal{O}_{\bar{L}QddD}^{prts} \right), \\ \frac{1}{2} \left(\mathcal{O}_{\bar{L}dddH}^{prst} - \mathcal{O}_{\bar{L}dddH}^{prts} \right) \text{ (with at least two of } r, s, t \text{ being equal}), \\ \mathcal{O}_{\bar{L}dddH}^{prst}, \quad \mathcal{O}_{\bar{L}dddH}^{pstr} \text{ (for } r < s < t), \quad \frac{1}{6} \left(\mathcal{O}_{\bar{e}dddD}^{prst} + 5 \text{ permutations of } (r, s, t) \right), \quad (2.4)$$

Constraints on the flavor indices of operators

Inconvenient for one-loop matching, derivation of RGEs, phenomenological studies, etc.
Question: A more convenient physical basis for dim-7 operators?

5

	$\psi^2 H^4$	
$\mathcal{O}_{\ell H}^{(S)lphaeta}=rac{1}{2}\left(\mathcal{O}_{\ell H}^{lphaeta}+\mathcal{O}_{\ell H}^{etalpha} ight)$	$C_{\ell H}^{(S)\alpha\beta} = \frac{1}{2} \left(C_{\ell H}^{\alpha\beta} + C_{\ell H}^{\beta\alpha} \right)$	$\frac{1}{2}n(n+1)$
	$\psi^2 H^3 D$	
${\cal O}_{\ell e H D}^{lpha eta}$	$C_{\ell e H D}^{lpha eta}$	n^2
	$\psi^2 H^2 D^2$	
$\mathcal{O}_{\ell HD1}^{(S)lphaeta} = rac{1}{2} \left(\mathcal{O}_{\ell HD1}^{lphaeta} + \mathcal{O}_{\ell HD1}^{etalpha} ight)$	$C_{\ell H D 1}^{(S)\alpha\beta} = \frac{1}{2} \left(C_{\ell H D 1}^{\alpha\beta} + C_{\ell H D 1}^{\beta\alpha} \right)$	$\frac{1}{2}n(n+1)$
$\mathcal{O}_{\ell HD2}^{(S)lphaeta}=rac{1}{2}\left(\mathcal{O}_{\ell HD2}^{lphaeta}+\mathcal{O}_{\ell HD2}^{etalpha} ight)$	$C_{\ell H D 2}^{(S)\alpha\beta} = \frac{1}{2} \left(C_{\ell H D 2}^{\alpha\beta} + C_{\ell H D 2}^{\beta\alpha} \right)$	$\frac{1}{2}n(n+1)$
	$\psi^2 H^2 X$	
$\mathcal{O}_{\ell HB}^{(A)lphaeta} = rac{1}{2} \left(\mathcal{O}_{\ell HB}^{lphaeta} - \mathcal{O}_{\ell HB}^{etalpha} ight)$	$C_{\ell HB}^{(A)\alpha\beta} = \frac{1}{2} \left(C_{\ell HB}^{\alpha\beta} - C_{\ell HB}^{\beta\alpha} \right)$	$\frac{1}{2}n(n-1)$
$\mathcal{O}_{\ell HW}^{lphaeta}$	$C_{\ell HW}^{lphaeta}$	n^2
	$\psi^4 H$	
$\mathcal{O}^{(S)lphaeta\gamma\lambda}_{ar{e}\ell\ell\ell H}=rac{1}{6}\left(\mathcal{O}^{lphaeta\gamma\lambda}_{ar{e}\ell\ell\ell H}+\mathcal{O}^{lpha\lambdaeta\gamma}_{ar{e}\ell\ell\ell H}+\mathcal{O}^{lpha\gamma\lambdaeta}_{ar{e}\ell\ell\ell H} ight)$	$C^{(S)\alpha\beta\gamma\lambda}_{\bar{e}\ell\ell\ell H} = \frac{1}{6} \left(C^{\alpha\beta\gamma\lambda}_{\bar{e}\ell\ell\ell H} + C^{\alpha\lambda\beta\gamma}_{\bar{e}\ell\ell\ell H} + C^{\alpha\gamma\lambda\beta}_{\bar{e}\ell\ell\ell H} \right)$	$\frac{1}{2}n^2(n+1)(n+2)$
$+\mathcal{O}^{lphaeta\lambda\gamma}_{ar{e}\ell\ell\ell H}+\mathcal{O}^{lpha\gammaeta\lambda}_{ar{e}\ell\ell\ell H}+\mathcal{O}^{lpha\lambda\gammaeta}_{ar{e}\ell\ell\ell H} ight)$	$+C^{lphaeta\lambda\gamma}_{ar{e}\ell\ell\ell H}+C^{lpha\gammaeta\lambda}_{ar{e}\ell\ell\ell H}+C^{lpha\lambda\gammaeta}_{ar{e}\ell\ell\ell H} ight)$	$\frac{1}{6}n(n+1)(n+2)$
$\mathcal{O}_{\overline{e}\ell\ell\ell H}^{(A)lphaeta\gamma\lambda} = rac{1}{6} \left(\mathcal{O}_{\overline{e}\ell\ell\ell H}^{lphaeta\gamma\lambda} + \mathcal{O}_{\overline{e}\ell\ell\ell H}^{lpha\lambdaeta\gamma} + \mathcal{O}_{\overline{e}\ell\ell H}^{lpha\gamma\lambdaeta} ight)$	$C_{\overline{e}\ell\ell\ell H}^{(A)\alpha\beta\gamma\lambda} = \frac{1}{6} \left(C_{\overline{e}\ell\ell\ell H}^{\alpha\beta\gamma\lambda} + C_{\overline{e}\ell\ell\ell H}^{\alpha\lambda\beta\gamma} + C_{\overline{e}\ell\ell\ell H}^{\alpha\gamma\lambda\beta} \right)$	$\frac{1}{6}n^2(n-1)(n-2)$
$-\mathcal{O}_{\overline{e}\ell\ell\ell H}^{\alpha\beta\lambda\gamma} - \mathcal{O}_{\overline{e}\ell\ell\ell H}^{\alpha\gamma\beta\lambda} - \mathcal{O}_{\overline{e}\ell\ell\ell H}^{\alpha\lambda\gamma\beta} \Big)$	$-C_{\bar{e}\ell\ell\ell H}^{\alpha\beta\lambda\gamma} - C_{\bar{e}\ell\ell\ell H}^{\alpha\gamma\beta\lambda} - C_{\bar{e}\ell\ell\ell H}^{\alpha\lambda\gamma\beta}\right)$	0
$\mathcal{O}_{\overline{e}\ell\ell\ell H}^{(M)\alpha\beta\gamma\lambda} = \frac{1}{3} \left(\mathcal{O}_{\overline{e}\ell\ell\ell H}^{\alpha\beta\gamma\lambda} + \mathcal{O}_{\overline{e}\ell\ell\ell H}^{\alpha\gamma\beta\lambda} - \mathcal{O}_{\overline{e}\ell\ell\ell H}^{\alpha\lambda\gamma\beta} \right)$	$C_{\bar{e}\ell\ell\ell H}^{(M)\alpha\beta\gamma\gamma} = \frac{1}{6} \left(2C_{\bar{e}\ell\ell\ell H}^{\alpha\beta\gamma\lambda} - C_{\bar{e}\ell\ell\ell H}^{\alpha\lambda\beta\gamma} - C_{\bar{e}\ell\ell\ell H}^{\alpha\gamma\lambda\beta} - C_{\bar{e}\ell\ell\ell H}^{\alpha\gamma\lambda\beta} \right)$	$\frac{1}{2}n^2(n-1)(n+1)$
$-\mathcal{O}^{lpha\gamma\lambda ho}_{ar{e}\ell\ell\ell H}ig)$	$+C^{\alpha\beta\lambda\gamma}_{\bar{e}\ell\ell\ell H}+C^{\alpha\gamma\beta\lambda}_{\bar{e}\ell\ell\ell H}-2C^{\alpha\lambda\gamma\beta}_{\bar{e}\ell\ell\ell H}\Big)$	3 . , , , ,
$\mathcal{O}_{ar{d}\ell q\ell H1}^{lphaeta\gamma\lambda}$	$C^{lphaeta\gamma\lambda}_{ar{d}\ell q\ell H1}$	n^4
$\mathcal{O}_{ar{d}\ell q\ell H2}^{lphaeta\gamma\lambda}$	$C^{lphaeta\gamma\lambda}_{ar{d}\ell q\ell H2}$	n^4
$\mathcal{O}_{\overline{d}\ell u e H}^{lphaeta\gamma\lambda}$	$C^{lphaeta\gamma\lambda}_{\overline{d}\ell u e H}$	n^4
${\cal O}^{lphaeta\gamma\lambda}_{\overline{q}u\ell\ell H}$	$C^{lphaeta\gamma\lambda}_{ar{q}u\ell\ell H}$	n^4
$\mathcal{O}_{\overline{\lambda}}^{\alpha\beta\gamma\lambda}$	$C^{lpha\beta\gamma\lambda}_{\overline{a},\ldots,\widetilde{a}}$	n^4
$\mathcal{O}_{\bar{\ell}dddH}^{(M)lphaeta\gamma\lambda} = rac{1}{3} \left(\mathcal{O}_{\bar{\ell}dddH}^{lphaeta\gamma\lambda} + \mathcal{O}_{\bar{\ell}dddH}^{lpha\gammaeta\lambda} - \mathcal{O}_{\bar{\ell}dddH}^{lphaeta\gamma} - \mathcal{O}_{\bar{\ell}dddH}^{lphaeta\gamma\lambda} ight)$	$C_{\bar{\ell}dddH}^{(M)\beta\beta\gamma\lambda} = \frac{1}{6} \left(2C_{\bar{\ell}dddH}^{\alpha\beta\gamma\lambda} - C_{\bar{\ell}dddH}^{\alpha\lambda\beta\gamma} - C_{\bar{\ell}dddH}^{\alpha\gamma\lambda\beta} - 2C_{\bar{\ell}dddH}^{\alpha\beta\lambda\gamma} + C_{\bar{\ell}dddH}^{\alpha\gamma\beta\lambda} + C_{\bar{\ell}dddH}^{\alpha\lambda\gamma\beta} \right)$	$\frac{1}{3}n^2(n-1)(n+1)$
$\mathcal{O}_{ar{e}qdd ilde{H}}^{(A)lphaeta\gamma\lambda}=rac{1}{2}\left(\mathcal{O}_{ar{e}qdd ilde{H}}^{lphaeta\gamma\lambda}-\mathcal{O}_{ar{e}qdd ilde{H}}^{lphaeta\lambda\gamma} ight)$	$\left \begin{array}{c} C^{(A)lphaeta\gamma\lambda}_{ar{e}qdd ilde{H}} = rac{1}{2} \left(C^{lphaeta\gamma\lambda}_{ar{e}qdd ilde{H}} - C^{lphaeta\lambda\gamma}_{ar{e}qdd ilde{H}} ight) ight.$	$\frac{1}{2}n^3(n-1)$
$\mathcal{O}_{ ilde{\ell} daa ilde{H}}^{lphaeta\gamma\lambda}$	$C^{lphaeta\gamma\lambda}_{ar{\ell} dag \widetilde{H}}$	n^4
	$\psi^4 D$	
$\mathcal{O}_{ar{e}ddD}^{(S)lphaeta\gamma\lambda} = rac{1}{6} \left(\mathcal{O}_{ar{e}ddD}^{lphaeta\gamma\lambda} + \mathcal{O}_{ar{e}ddD}^{lphaeta\gamma\lambda} + \mathcal{O}_{ar{e}ddD}^{lpha\lambdaeta\gamma\lambda} ight)$	$C_{\bar{e}dddD}^{(S)\alpha\beta\gamma\lambda} = \frac{1}{6} \left(C_{\bar{e}dddD}^{\alpha\beta\gamma\lambda} + C_{\bar{e}dddD}^{\alpha\lambda\beta\gamma} + C_{\bar{e}dddD}^{\alpha\gamma\lambda\beta} \right)$	$\frac{1}{2}n^2(n+1)(n+2)$
$+\mathcal{O}_{ar{e}ddD}^{lphaeta\lambda\gamma}+\mathcal{O}_{ar{e}ddD}^{lpha\gammaeta\lambda}+\mathcal{O}_{ar{e}ddD}^{lpha\lambda\gammaeta} ight)$	$+C_{\bar{e}dddD}^{\alpha\beta\lambda\gamma}+C_{\bar{e}dddD}^{\alpha\gamma\beta\lambda}+C_{\bar{e}dddD}^{\alpha\lambda\gamma\beta}\right)$	6 ¹⁰ (10 + 1)(10 + 2)
$\mathcal{O}_{ar{d}u\ell\ell D}^{(S)lphaeta\gamma\lambda}=rac{1}{2}\left(\mathcal{O}_{ar{d}u\ell\ell D}^{lphaeta\gamma\lambda}+\mathcal{O}_{ar{d}u\ell\ell D}^{lphaeta\gamma} ight)$	$C_{\bar{d}u\ell\ell D}^{(S)\alpha\beta\gamma\lambda} = \frac{1}{2} \left(C_{\bar{d}u\ell\ell D}^{\alpha\beta\gamma\lambda} + C_{\bar{d}u\ell\ell D}^{\alpha\beta\lambda\gamma} \right)$	$\frac{1}{2}n^3(n+1)$
$\mathcal{O}^{(S)lphaeta\gamma\lambda}_{ar{\ell}qddD} = rac{1}{2} \left(\mathcal{O}^{lphaeta\gamma\lambda}_{ar{\ell}qddD} + \mathcal{O}^{lphaeta\lambda\gamma}_{ar{\ell}qddD} ight)$	$\left \begin{array}{c} C^{(S)lphaeta\gamma\lambda}_{ar{\ell}qddD} = rac{1}{2} \left(C^{lphaeta\gamma\lambda}_{ar{\ell}qddD} + C^{lphaeta\lambda\gamma}_{ar{\ell}qddD} ight) ight.$	$\frac{1}{2}n^3(n+1)$

A more convenient physical basis: DZ, 2023a

Operators with repeated fermions decomposed as SU(n) tensor n is the number of flavors

- No constraints on the flavor indices
- Each flavor index can run over all flavors
- Automatically get rid of redundant degrees of freedom in operators

The Green's Basis for Dim-7 Operators

- The so-called Green's basis is directly related to 1PI Green's functions, and usually needed for off-shell scheme
 M. Jiang et al, 2019; V. Gherardi, D. Marzocca, E. Venturini, 2020
- This basis is converted to the physical one via EoMs or field redefinitions

The Green's basis for dim-7 operators: DZ, 2023a (X. X. Li, Z. Ren, J. H. Yu, 2023)

	$\psi^2 H^4$			$\psi^2 H^3 D$	
$\mathcal{O}_{\ell H}$	$\epsilon^{ab}\epsilon^{de}\left(\ell^a_{ m L}C\ell^d_{ m L} ight)H^bH^e\left(H^\dagger H ight)$	$\frac{1}{2}n(n+1)$	$\mathcal{O}_{\ell eHD}$	$\epsilon^{ab}\epsilon^{de}\left(\ell^a_{ m L}C\gamma_\mu E_{ m R} ight)H^bH^d{ m i}D^\mu H^e$	n^2
	$\psi^2 H^2 D^2$			$\psi^4 H$	
$\mathcal{O}_{\ell HD1}$	$\epsilon^{ab}\epsilon^{de}\left(\ell^a_{ m L}CD^\mu\ell^b_{ m L} ight)H^dD_\mu H^e$	n^2	$\mathcal{O}_{\overline{e}\ell\ell\ell H}$	$\epsilon^{ab}\epsilon^{de}\left(\overline{E_{ m R}}\ell_{ m L}^{a} ight)\left(\ell_{ m L}^{b}C\ell_{ m L}^{d} ight)H^{e}$	$\frac{1}{3}n^2(2n^2+1)$
$\mathcal{O}_{\ell HD2}$	$\epsilon^{ad}\epsilon^{be}\left(\ell^a_{ m L}CD^\mu\ell^b_{ m L} ight)H^dD_\mu H^e$	n^2	$\mathcal{O}_{\overline{d}\ell q\ell H1}$	$\epsilon^{ab}\epsilon^{de}\left(\overline{D_{\mathrm{R}}}\ell_{\mathrm{L}}^{a} ight)\left(Q_{\mathrm{L}}^{b}C\ell_{\mathrm{L}}^{d} ight)H^{e}$	n^4
$\mathcal{R}_{\ell HD3}$	$\epsilon^{ad}\epsilon^{be}\left(\ell^a_{ m L}C\ell^b_{ m L} ight)D^\mu H^dD_\mu H^e$	$\frac{1}{2}n(n+1)$	$\mathcal{O}_{\overline{d}\ell q\ell H2}$	$\epsilon^{ad}\epsilon^{be}\left(\overline{D_{\mathrm{R}}}\ell_{\mathrm{L}}^{a} ight)\left(Q_{\mathrm{L}}^{b}C\ell_{\mathrm{L}}^{d} ight)H^{e}$	n^4
$\mathcal{R}_{\ell HD4}$	$\epsilon^{ad}\epsilon^{be}\left(D^{\mu}\ell^a_{ m L}CD_{\mu}\ell^b_{ m L} ight)H^dH^e$	$\frac{1}{2}n(n+1)$	$\mathcal{O}_{\overline{d}\ell ueH}$	$\epsilon^{ab}\left(\overline{D_{ m R}}\ell_{ m L}^{a} ight)\left(U_{ m R}CE_{ m R} ight)H^{b}$	n^4
$\mathcal{R}_{\ell HD5}$	$\epsilon^{ab}\epsilon^{de}\left(\ell^a_{ m L}C\sigma_{\mu u}D^\mu\ell^b_{ m L} ight)H^dD^ uH^e$	n^2	$\mathcal{O}_{\overline{q}u\ell\ell H}$	$\epsilon^{ab}\left(\overline{Q_{ m L}}U_{ m R} ight)\left(\ell_{ m L}C\ell_{ m L}^{a} ight)H^{b}$	n^4
$\mathcal{R}_{\ell HD6}$	$\epsilon^{ad}\epsilon^{be}\left(D^{\mu}\ell^a_{ m L}C\sigma_{\mu u}D^{ u}\ell^b_{ m L} ight)H^dH^e$	$\frac{1}{2}n(n+1)$	$\mathcal{O}_{\overline{\ell} d u d \widetilde{H}}$	$\left(\overline{\ell_{\mathrm{L}}}{D}_{\mathrm{R}} ight)\left(U_{\mathrm{R}}C{D}_{\mathrm{R}} ight)\widetilde{H}$	n^4
	$\psi^2 H^2 X$		$\mathcal{O}_{\overline{\ell}dddH}$	$\left(\overline{\ell_{\mathrm{L}}}D_{\mathrm{R}} ight)\left(D_{\mathrm{R}}CD_{\mathrm{R}} ight)H$	$rac{1}{3}n^2\left(n^2-1 ight)$
$\mathcal{O}_{\ell HB}$	$\epsilon^{ab}\epsilon^{de}\left(\ell^a_{ m L}C\sigma_{\mu u}\ell^d_{ m L} ight)H^bH^eB^{\mu u}$	$\frac{1}{2}n(n-1)$	$\mathcal{O}_{\overline{e}qdd\widetilde{H}}$	$\epsilon^{ab}\left(\overline{E_{ m R}}Q_{ m L}^{a} ight)\left(D_{ m R}CD_{ m R} ight)\widetilde{H}^{b}$	$rac{1}{2}n^3(n-1)$
$\mathcal{O}_{\ell HW}$	$\epsilon^{ab} \left(\epsilon \sigma^{I} \right)^{de} \left(\ell^{a}_{\rm L} C \sigma_{\mu\nu} \ell^{d}_{\rm L} \right) H^{b} H^{e} W^{I\mu\nu}$	n^2	$\mathcal{O}_{\overline{\ell} dqq\widetilde{H}}$	$\epsilon^{ab}\left(\overline{\ell_{ m L}}D_{ m R} ight)\left(Q_{ m L}CQ_{ m L}^{a} ight)\widetilde{H}^{b}$	n^4
		ψ^4	^{1}D		
$\mathcal{O}_{\overline{e}dddD}$	$\left(\overline{E_{\mathrm{R}}}\gamma_{\mu}D_{\mathrm{R}} ight)\left(D_{\mathrm{R}}C\mathrm{i}D^{\mu}D_{\mathrm{R}} ight)$	n^4	$\mathcal{O}_{\overline{\ell}qddD}$	$\left(\overline{\ell_{\mathrm{L}}}\gamma_{\mu}Q_{\mathrm{L}} ight)\left(D_{\mathrm{R}}C\mathrm{i}D^{\mu}D_{\mathrm{R}} ight)$	n^4
$\mathcal{O}_{\overline{d}u\ell\ell D}$	$\epsilon^{ab}\left(\overline{D_{ m R}}\gamma_{\mu}U_{ m R} ight)\left(\ell_{ m L}^{a}{ m Ci}D^{\mu}\ell_{ m L}^{b} ight)$	n^4	$\mathcal{R}_{ar{\ell} dDqd}$	$\left(\overline{\ell_{ m L}}D_{ m R} ight)\left({ m i}D^{\mu}Q_{ m L}C\gamma_{\mu}D_{ m R} ight)$	n^4
$\mathcal{R}_{\overline{d}\ell\ell Du}$	$\epsilon^{ab}\left(\overline{D_{ m R}}\ell_{ m L}^{a} ight)\left(\ell_{ m L}^{b}C\gamma_{\mu}{ m i}D^{\mu}\overline{U_{ m R}} ight)$	n^4	$\mathcal{R}_{\overline{\ell} dqDd}$	$\left(\overline{\ell_{\mathrm{L}}}D_{\mathrm{R}} ight)\left(Q_{\mathrm{L}}C\gamma_{\mu}\mathrm{i}D^{\mu}D_{\mathrm{R}} ight)$	n^4
$\mathcal{R}_{\overline{d}D\ell\ell u}$	$\epsilon^{ab}\left(\overline{D_{ m R}}{ m i}D^{\mu}\ell_{ m L}^{a} ight)\left(\ell_{ m L}^{b}C\gamma_{\mu}U_{ m R} ight)$	n^4			

Reduction Relations Between Two Bases

Apply **EoMs** to operators in the Green's basis:

$$\begin{split} \mathcal{R}^{\alpha\beta}_{\ell HD3} &= \mathcal{O}^{\beta\alpha}_{\ell HD1} - \mathcal{O}^{\beta\alpha}_{\ell HD2} - \mathcal{O}^{\alpha\beta}_{\ell HD2} + m^2 \left(\mathcal{O}^{\dagger}_{5}\right)_{\alpha\beta} + 2\lambda \mathcal{O}^{\alpha\beta}_{\ell H} - \left(Y^{\dagger}_{l}\right)_{\gamma\lambda} \mathcal{O}^{\gamma\lambda\beta\alpha}_{\bar{e}\ell\ell\ell H} - \left(Y^{\dagger}_{d}\right)_{\gamma\lambda} \mathcal{O}^{\gamma\beta\lambda\alpha}_{\bar{d}\ell q\ell H1} \\ &- \left(Y^{\dagger}_{d}\right)_{\gamma\lambda} \mathcal{O}^{\gamma\alpha\lambda\beta}_{\bar{d}\ell q\ell H1} + \left(Y^{\dagger}_{d}\right)_{\gamma\lambda} \mathcal{O}^{\gamma\alpha\lambda\beta}_{\bar{d}\ell q\ell H2} + (Y_{u})_{\gamma\lambda} \mathcal{O}^{\gamma\lambda\beta\alpha}_{\bar{q}u\ell\ell H} , \\ \mathcal{R}^{\alpha\beta}_{\ell HD4} &= \mathcal{O}^{\alpha\beta}_{\ell HD1} - 2\mathcal{O}^{\alpha\beta}_{\ell HD2} - (Y_{l})_{\beta\gamma} \mathcal{O}^{\alpha\gamma}_{\ell eHD} + \frac{1}{4}g_{1}\mathcal{O}^{\alpha\beta}_{\ell HB} + \frac{1}{4}g_{2}\mathcal{O}^{\alpha\beta}_{\ell HW} , \\ \mathcal{R}^{\alpha\beta}_{\ell HD5} &= i \left[\mathcal{O}^{\alpha\beta}_{\ell HD1} + (Y_{l})_{\beta\gamma} \mathcal{O}^{\alpha\gamma}_{\ell eHD} \right] , \\ \mathcal{R}^{\alpha\beta}_{\ell HD6} &= -i \left[\mathcal{O}^{\alpha\beta}_{\ell HD1} - 2\mathcal{O}^{\alpha\beta}_{\ell HD2} - (Y_{l})_{\beta\gamma} \mathcal{O}^{\alpha\gamma}_{\ell eHD} + \frac{1}{4}g_{1}\mathcal{O}^{\alpha\beta}_{\ell HB} + \frac{1}{4}g_{2}\mathcal{O}^{\alpha\beta}_{\ell HW} \right] , \\ \mathcal{R}^{\alpha\beta\gamma\lambda}_{\bar{d}\ell\ell Du} &= \left(Y^{\dagger}_{u}\right)_{\lambda\rho} \mathcal{O}^{\alpha\beta\rho\gamma}_{\bar{d}\ell q\ell H2} , \\ \end{split}$$

Reduction relations:

$$\begin{split} C_{\ell H}^{(S)\alpha\beta} &= G_{\ell H}^{(S)\alpha\beta} + \left(G_{5}^{\dagger}\right)^{\alpha\beta} \left(\frac{1}{4}g_{2}^{2}G_{2W} - g_{2}G_{WDH} - 2\lambda G_{DH} - \frac{1}{2}G_{HD}^{\prime} - \mathrm{i}G_{HD}^{\prime\prime}\right) \\ &\quad + \frac{1}{2}\left(G_{5}^{\dagger}\right)^{\alpha\gamma} \left(G_{H\ell}^{\prime(3)\gamma\beta} - \mathrm{i}G_{H\ell}^{\prime\prime(3)\gamma\beta} - G_{H\ell}^{\prime(1)\gamma\beta} + \mathrm{i}G_{H\ell}^{\prime\prime(1)\gamma\beta}\right) + \frac{1}{2}\left(G_{5}^{\dagger}\right)^{\beta\gamma} \\ &\quad \times \left(G_{H\ell}^{\prime(3)\gamma\alpha} - \mathrm{i}G_{H\ell}^{\prime\prime(3)\gamma\alpha} - G_{H\ell}^{\prime(1)\gamma\alpha} + \mathrm{i}G_{H\ell}^{\prime\prime(1)\gamma\alpha}\right) + 2\lambda G_{\ell HD3}^{(S)\alpha\beta} \,. \end{split}$$

$$C_{\ell eHD}^{\alpha\beta} &= G_{\ell eHD}^{\alpha\beta} + \frac{1}{2}\left(G_{5}^{\dagger}\right)^{\alpha\gamma} \left[G_{eHD2}^{\gamma\beta} - G_{eHD4}^{\gamma\beta} - 2G_{\ell D}^{\gamma\lambda}\left(Y_{l}\right)_{\lambda\beta}\right] \\ &\quad + \left(\mathrm{i}G_{\ell HD5}^{\alpha\gamma} + \mathrm{i}G_{\ell HD6}^{(S)\alpha\gamma} - G_{\ell HD4}^{(S)\alpha\gamma}\right)\left(Y_{l}\right)_{\gamma\beta} - \frac{1}{4}\left(G_{\ell HD2}^{\alpha\gamma} - G_{\ell HD2}^{\gamma\alpha}\right)\left(Y_{l}\right)_{\gamma\beta} \,. \end{split}$$

•

$$C_5^{\alpha\beta} = G_5^{\alpha\beta} - 2m^2 G_{DH} G_5^{\alpha\beta} + 2m^2 \left(G_{\ell HD3}^{(S)\dagger}\right)^{\alpha\beta}$$

$$\begin{split} \mathcal{R}_{\bar{d}D\ell\ell u}^{\alpha\beta\gamma\lambda} &= \mathcal{O}_{\bar{d}u\ell\ell D}^{\alpha\lambda\gamma\beta} - (Y_l)_{\beta\rho} \, \mathcal{O}_{\bar{d}\ell u e H}^{\alpha\gamma\lambda\rho} \, , \\ \mathcal{R}_{\bar{\ell}dDqd}^{\alpha\beta\gamma\lambda} &= - (Y_u)_{\gamma\rho} \, \mathcal{O}_{\bar{\ell}dud\tilde{H}}^{\alpha\beta\rho\lambda} + (Y_d)_{\gamma\rho} \, \mathcal{O}_{\bar{\ell}dddH}^{\alpha\beta\lambda\rho} \, , \\ \mathcal{R}_{\bar{\ell}dqDd}^{\alpha\beta\gamma\lambda} &= - \left(Y_d^{\dagger}\right)_{\lambda\rho} \, \mathcal{O}_{\bar{\ell}dqq\tilde{H}}^{\alpha\beta\gamma\rho} \, . \end{split}$$

Terms in blue come from dim-6 operators in the Green's basis

DZ, 2023a

$$\begin{split} \mathbf{i} \not{D} \ell^{a}_{\alpha \mathrm{L}} &= \left(Y_{l}\right)_{\alpha \beta} H^{a} E_{\beta \mathrm{R}} - \frac{C_{5}^{\alpha \beta} \widetilde{H}^{a} \widetilde{H}^{\mathrm{T}} \ell^{\mathrm{c}}_{\beta \mathrm{L}}}{\left(D^{2} H\right)^{a}} \\ &= -m^{2} H^{a} - 2\lambda H^{a} \left(H^{\dagger} H\right) \\ &- \left(\overline{E_{\mathrm{R}}} Y_{l}^{\dagger} \ell^{a}_{\mathrm{L}} + \overline{D_{\mathrm{R}}} Y_{\mathrm{d}}^{\dagger} Q_{\mathrm{L}}^{a} - \epsilon^{ab} \overline{Q_{\mathrm{L}}^{b}} Y_{\mathrm{u}} U_{\mathrm{R}}\right) \\ &- \frac{1}{2} \epsilon^{ab} C_{5}^{\alpha \beta} \left(\overline{\ell^{b}_{\alpha \mathrm{L}}} \widetilde{H}^{\mathrm{T}} \ell^{\mathrm{c}}_{\beta \mathrm{L}} + \overline{\ell_{\alpha \mathrm{L}}} \widetilde{H} \ell^{bc}_{\beta \mathrm{L}}\right) \;, \end{split}$$

Terms in red come from dim-7 operators in the Green's basis

Induced by non-trivial flavor relation
$$4\mathcal{O}_{\ell H D 2}^{\alpha \beta} + 2\mathcal{K}^{\alpha \beta} + 2(Y_l)_{\beta \gamma} \mathcal{O}_{\ell e H D}^{\alpha \gamma} - \frac{1}{2}g_2 \mathcal{O}_{\ell H W}^{\alpha \beta} - \alpha \leftrightarrow \beta = g_1 \mathcal{O}_{\ell H B}^{\alpha \beta}$$

Reduction Relations Between Two Bases

Apply **EoMs** to operators in the Green's basis:

$$\begin{split} \mathcal{R}_{\ell HD3}^{\alpha\beta} &= \mathcal{O}_{\ell HD1}^{\beta\alpha} - \mathcal{O}_{\ell HD2}^{\beta\alpha} - \mathcal{O}_{\ell HD2}^{\alpha\beta} + m^2 \left(\mathcal{O}_5^{\dagger} \right)_{\alpha\beta} + 2\lambda \mathcal{O}_{\ell H}^{\alpha\beta} - \left(Y_l^{\dagger} \right)_{\gamma\lambda} \mathcal{O}_{\bar{e}\ell\ell\ell H}^{\gamma\lambda\beta\alpha} - \left(Y_d^{\dagger} \right)_{\gamma\lambda} \mathcal{O}_{d\ell q\ell H1}^{\gamma\beta\lambda\alpha} \\ &- \left(Y_d^{\dagger} \right)_{\gamma\lambda} \mathcal{O}_{d\ell q\ell H1}^{\gamma\alpha\lambda\beta} + \left(Y_d^{\dagger} \right)_{\gamma\lambda} \mathcal{O}_{d\ell q\ell H2}^{\gamma\alpha\lambda\beta} + (Y_u)_{\gamma\lambda} \mathcal{O}_{\bar{q}u\ell\ell H}^{\gamma\lambda\beta\alpha} \\ \mathcal{R}_{\ell HD4}^{\alpha\beta} &= \mathcal{O}_{\ell HD1}^{\alpha\beta} - 2\mathcal{O}_{\ell HD2}^{\alpha\beta} - (Y_l)_{\beta\gamma} \mathcal{O}_{\ell eHD}^{\alpha\gamma} + \frac{1}{4}g_1 \mathcal{O}_{\ell HB}^{\alpha\beta} + \frac{1}{4}g_2 \mathcal{O}_{\ell HW}^{\alpha\beta} \\ \mathcal{R}_{\ell HD5}^{\alpha\beta} &= i \left[\mathcal{O}_{\ell HD1}^{\alpha\beta} + (Y_l)_{\beta\gamma} \mathcal{O}_{\ell eHD}^{\alpha\gamma} \right] , \\ \mathcal{R}_{\ell HD6}^{\alpha\beta} &= -i \left[\mathcal{O}_{\ell HD1}^{\alpha\beta} - 2\mathcal{O}_{\ell HD2}^{\alpha\beta} - (Y_l)_{\beta\gamma} \mathcal{O}_{\ell eHD}^{\alpha\gamma} + \frac{1}{4}g_1 \mathcal{O}_{\ell HB}^{\alpha\beta} + \frac{1}{4}g_2 \mathcal{O}_{\ell HW}^{\alpha\beta} \right] , \\ \mathcal{R}_{\bar{d}\ell Du}^{\alpha\beta\gamma\lambda} &= \left(Y_u^{\dagger} \right)_{\lambda\rho} \mathcal{O}_{\bar{d}\ell q\ell H2}^{\alpha\beta\gamma\gamma} , \\ \mathcal{R}_{\bar{d}\ell Du}^{\alpha\beta\gamma\lambda} &= \left(Y_u^{\dagger} \right)_{\lambda\rho} \mathcal{O}_{\bar{d}\ell q\ell H2}^{\alpha\beta\gamma\gamma} , \\ \end{split}$$

Reduction relations:

$$\begin{split} C^{(S)\alpha\beta}_{\ell H} &= G^{(S)\alpha\beta}_{\ell H} + \left(G^{\dagger}_{5}\right)^{\alpha\beta} \left(\frac{1}{4}g_{2}^{2}G_{2W} - g_{2}G_{WDH} - 2\lambda G_{DH} - \frac{1}{2}G'_{HD} - \mathrm{i}G''_{HD}\right) \\ &\quad + \frac{1}{2}\left(G^{\dagger}_{5}\right)^{\alpha\gamma} \left(G'^{(3)\gamma\beta}_{H\ell} - \mathrm{i}G''^{(3)\gamma\beta}_{H\ell} - G'^{(1)\gamma\beta}_{H\ell} + \mathrm{i}G''^{(1)\gamma\beta}_{H\ell}\right) + \frac{1}{2}\left(G^{\dagger}_{5}\right)^{\beta\gamma} \\ &\quad \times \left(G'^{(3)\gamma\alpha}_{H\ell} - \mathrm{i}G''^{(3)\gamma\alpha}_{H\ell} - G'^{(1)\gamma\alpha}_{H\ell} + \mathrm{i}G''^{(1)\gamma\alpha}_{H\ell}\right) + 2\lambda G^{(S)\alpha\beta}_{\ell HD3} \,. \end{split}$$
$$\\ C^{\alpha\beta}_{\ell eHD} &= G^{\alpha\beta}_{\ell eHD} + \frac{1}{2}\left(G^{\dagger}_{5}\right)^{\alpha\gamma} \left[G^{\gamma\beta}_{eHD2} - G^{\gamma\beta}_{eHD4} - 2G^{\gamma\lambda}_{\ell D}\left(Y_{l}\right)_{\lambda\beta}\right] \\ &\quad + \left(\mathrm{i}G^{\alpha\gamma}_{\ell HD5} + \mathrm{i}G^{(S)\alpha\gamma}_{\ell HD6} - G^{(S)\alpha\gamma}_{\ell HD4}\right)\left(Y_{l}\right)_{\gamma\beta} - \frac{1}{4}\left(G^{\alpha\gamma}_{\ell HD2} - G^{\gamma\alpha}_{\ell HD2}\right)\left(Y_{l}\right)_{\gamma\beta} \,. \end{split}$$

•

$$C_5^{lphaeta} = G_5^{lphaeta} - 2m^2 G_{DH} G_5^{lphaeta} + 2m^2 \left(G_{\ell HD3}^{(S)\dagger}
ight)^{lphaeta}$$

$$\begin{split} \mathcal{R}_{\bar{d}D\ell\ell u}^{\alpha\beta\gamma\lambda} &= \mathcal{O}_{\bar{d}u\ell D}^{\alpha\lambda\gamma\beta} - (Y_l)_{\beta\rho} \, \mathcal{O}_{\bar{d}\ell u e H}^{\alpha\gamma\lambda\rho} ,\\ \mathcal{R}_{\bar{\ell}dDqd}^{\alpha\beta\gamma\lambda} &= - (Y_u)_{\gamma\rho} \, \mathcal{O}_{\bar{\ell}dud\tilde{H}}^{\alpha\beta\rho\lambda} + (Y_d)_{\gamma\rho} \, \mathcal{O}_{\bar{\ell}dddH}^{\alpha\beta\lambda\rho} ,\\ \mathcal{R}_{\bar{\ell}dqDd}^{\alpha\beta\gamma\lambda} &= - \left(Y_d^{\dagger}\right)_{\lambda\rho} \, \mathcal{O}_{\bar{\ell}dqq\tilde{H}}^{\alpha\beta\gamma\rho} . \end{split}$$

DZ, 2023a

- ✓ The physical basis for dim-7 operators
- ✓ The Green's basis for dim-7 operators
- ✓ The reduction relations between two bases

• The RGEs of the LNV SMEFT Operators

Status of RGEs in the SMEFT

	d_5	d_5^2	d_6	d_5^3	$d_5 imes d_6$	d_7	d_5^4	$d_5^2 imes d_6$	d_6^2	$d_5 imes d_7$	d_8
$d_{\leq 4}$ (bosonic)			✓ [51]						✓ [27]		✓ [28]
$d_{\leq 4}$ (fermionic)			✓ [51]						Х		Х
d_5	✓ [52–54]				✓ [8]	✓ [8]					
d_6 (bosonic)		√ [44]	\checkmark [51, 55, 56]					This work	✓ [27]	This work	✓ [28]
d_6 (fermionic)		√ [44]	✓ [51, 55–57]					Х		Х	Х
d_7				√ [8]	√ [8]	✓ [42, 58]					
d_8 (bosonic)							This work	This work	✓ [27]	This work	√ [28]
d_8 (fermionic)							X	X	Х	Х	✓ [26]

Table 3: State of the art of the SMEFT renormalisation (adapted from Refs. [27, 28]). The rows show the renormalised operators (categorized by dimensions and statistics). The columns show the operators contributing to RG running. Blank entries vanish, \checkmark denotes that the complete contribution is available, \checkmark implies that only (but substantial) partial results is present, and, X indicates that nothing, or very little, is known. The contribution made in this paper is marked by This work. S. Das Bakshi, A. Diaz-Carmona, 2023

[8] M. Chala, A. Titov, 2021

- [26] M. A. Huber, S. De Angelis, 2021
- [27] M. Chala et al, 2021
- [28] S. Das Bakshi et al, 2022
- [42] Y. Liao, X. D. Ma, 2016
- [44] S. Davidson, M. Gorbahn, M. Leak, 2018; Y. L. Wang, D. Zhang, S. Zhou, 2023
- [51] E. E. Jenkins, A. V. Manohar, M. Trott, 2013

- [52] P. H. Chankowski, Z. Pluciennik, 1993
- [53] K. S. Babu, C. N. Leung, J. T. Pantaleone, 1993
- [54] S. Antusch et al, 2001
- [55] E. E. Jenkins, A. V. Manohar, M. Trott, 2014
- [56] R. Alonso et al, 2014a
- [57] R. Alonso et al, 2014b
- [58] Y. Liao, X. D. Ma, 2019

Status of RGEs in the SMEFT

Table 3: State of the art of the SMEFT renormalisation (adapted from Refs. [27, 28]). The rows show the renormalised operators (categorized by dimensions and statistics). The columns show the operators contributing to RG running. Blank entries vanish, \checkmark denotes that the complete contribution is available, \checkmark implies that only (but substantial) partial results is present, and, X indicates that nothing, or very little, is known. The contribution made in this paper is marked by This work. S. Das Bakshi, A. Diaz-Carmona, 2023

[8] M. Chala, A. Titov, 2021	Only one dim-7 operator, namely $\mathcal{O}_{\ell H}$, is considered and ${ extsf{Y}}_{ extsf{d}, extsf{l}}$ are ignored
[42] Y. Liao, X. D. Ma, 2016	The non-trivial flavor relations are not considered
[58] Y. Liao, X. D. Ma, 2019	No final results in a physical basis, only counterterms in the flavor-blind basis

- □ Working out the **complete results** in a more **convenient** physical basis
- □ As a crosscheck (Indeed, typos/mistakes in [8] and [58] are found and later confirmed by the authors)

RGEs of LNV Operators up to Dimension Seven

General structures of RGEs up to $\mathcal{O}(\Lambda^{-3})$:

$$16\pi^{2}\mu \frac{\mathrm{d}C_{5}}{\mathrm{d}\mu} = \gamma^{(5,5)}C_{5} + \hat{\gamma}^{(5,5)}C_{5}C_{5}C_{5} + \gamma^{(5,6)}_{i}C_{5}C_{6}^{i} + \gamma^{(5,7)}_{i}C_{7}^{i} ,$$

$$16\pi^{2}\mu \frac{\mathrm{d}C_{7}^{i}}{\mathrm{d}\mu} = \gamma^{(7,7)}_{ij}C_{7}^{j} + \gamma^{(7,5)}_{i}C_{5}C_{5}C_{5} + \gamma^{(7,6)}_{ij}C_{5}C_{6}^{j} ,$$

Procedure for calculations:

- A large amount of diagrams and also lots of calculations; FeynRules/Arts/Calc and Package-X
- FeynCalc can not properly deal with four-fermion vertices, thus diagrams involving four-fermion vertices are calculated by hand
- Crosscheck can be done by modifying the package Matchmakereft A. Carmona, et al., 2021

RGEs of LNV Operators up to Dimension Seven

Examples for the final results ($\mathcal{O}_5^{\alpha\beta} = \overline{\ell_{\alpha L}} \widetilde{H} \widetilde{H}^{\mathrm{T}} \ell_{\beta L}^{\mathrm{c}}$, $\mathcal{O}_{\ell H}^{\alpha\beta} = \overline{\ell_{\alpha L}^{\mathrm{c}}} \widetilde{H}^* \widetilde{H}^{\dagger} \ell_{\beta L} (H^{\dagger} H)$): DZ, 2023a;2023b

$$\begin{split} \dot{C}_{5}^{\alpha\beta} &= \frac{1}{2} \left(-3g_{2}^{2} + 4\lambda + 2T \right) C_{5}^{\alpha\beta} - \frac{3}{2} \left(Y_{l} Y_{l}^{\dagger} C_{5} \right)^{\alpha\beta} + m^{2} \left(8C_{H\square} - C_{HD} \right) C_{5}^{\alpha\beta} \\ &+ m^{2} \left\{ 8C_{\ell H}^{(S)*\alpha\beta} + \frac{3}{2}g_{2}^{2} \left(2C_{\ell HD1}^{(S)*\alpha\beta} + C_{\ell HD2}^{(S)*\alpha\beta} \right) + \left(Y_{l} Y_{l}^{\dagger} C_{\ell HD1}^{(S)\dagger} \right)^{\alpha\beta} - \frac{1}{2} \left(Y_{l} Y_{l}^{\dagger} C_{\ell HD2}^{(S)\dagger} \right)^{\alpha\beta} + 2 \left(Y_{l} C_{\ell eHD}^{\dagger} \right)^{\alpha\beta} \\ &- \left(Y_{l}^{\dagger} \right)_{\gamma\lambda} \left(3C_{\bar{e}\ell\ell\ell H}^{(S)*\gamma\lambda\alpha\beta} + 2C_{\bar{e}\ell\ell\ell H}^{(M)*\gamma\lambda\alpha\beta} \right) - 3 \left(Y_{d}^{\dagger} \right)_{\gamma\lambda} C_{\bar{d}\ell q\ell H1}^{*\gamma\alpha\lambda\beta} + 6 \left(Y_{u} \right)_{\lambda\gamma} C_{\bar{q}u\ell\ell H}^{*\lambda\gamma\alpha\beta} \right\} + \alpha \leftrightarrow \beta \end{split}$$

$$\begin{split} \dot{C}_{\ell H}^{(S)\alpha\beta} &= \frac{1}{2} \mathrm{Tr} \left(C_5 C_5^{\dagger} \right) C_5^{*\alpha\beta} + \frac{5}{4} \left(C_5^{\dagger} C_5 C_5^{\dagger} \right)^{\alpha\beta} + C_5^{*\alpha\beta} \left\{ -3C_H - \frac{3}{4} \left(g_1^2 - g_2^2 + 4\lambda \right) C_{HD} + \left(16\lambda - \frac{5}{3} g_2^2 \right) C_{H\Box} \right. \\ &\left. -3g_2^2 C_{HW} + \frac{3}{2} \mathrm{i} \left(g_1^2 C_{H\tilde{B}} + 3g_2^2 C_{H\tilde{W}} + g_1 g_2 C_{H\tilde{W}B} \right) - \mathrm{Tr} \left[2g_2^2 \left(C_{Hq}^{(3)} + \frac{1}{3} C_{H\ell}^{(3)} \right) + C_{eH} V_l^{\dagger} + 3C_{dH} Y_d^{\dagger} \right. \\ &\left. + 3Y_u C_{uH}^{\dagger} - 2 \left(Y_l^{\dagger} C_{H\ell}^{(3)} Y_l + 3Y_d^{\dagger} C_{Hq}^{(3)} Y_d + 3Y_u^{\dagger} C_{Hq}^{(3)} Y_u \right) + 3 \left(Y_u C_{Hud} Y_d^{\dagger} + Y_d C_{Hud}^{\dagger} Y_u^{\dagger} \right) \right] \right\} - 3g_2 \left(C_5^{\dagger} Y_l C_{eW}^{\dagger} \right)^{\alpha\beta} \\ &\left. + \frac{3}{2} \left(g_1^2 + g_2^2 \right) \left[\left(C_5^{\dagger} C_{H\ell}^{(3)} \right)^{\alpha\beta} - \left(C_5^{\dagger} C_{\ell\ell}^{(1)} \right)^{\alpha\beta} \right] + \frac{1}{2} \left(C_5^{\dagger} Y_l C_{eH}^{\dagger} \right)^{\alpha\beta} + \left(C_5^{\dagger} C_{eH} Y_l^{\dagger} \right)^{\alpha\beta} - 3 \left(C_5^{\dagger} Y_l Y_l^{\dagger} C_{H\ell}^{(3)} \right)^{\alpha\beta} \\ &\left. - \frac{1}{4} \left(3g_1^2 + 15g_2^2 - 80\lambda - 8T \right) C_{\ell H}^{(S)\alpha\beta} - \frac{3}{2} \left(C_{\ell H}^{(S)} Y_l Y_l^{\dagger} \right)^{\alpha\beta} + \left(2\lambda - \frac{3}{2}g_2^2 \right) \left(C_{\ell eHD} Y_l^{\dagger} \right)^{\alpha\beta} + \left(C_{\ell eHD} Y_l^{\dagger} Y_l Y_l^{\dagger} \right)^{\alpha\beta} \\ &\left. - \frac{3}{4}g_2^2 \left(g_2^2 - 4\lambda \right) C_{\ell HD1}^{(S)\alpha\beta} + \lambda \left(C_{\ell HD1}^{(S)} Y_l Y_l^{\dagger} \right)^{\alpha\beta} - \left(C_{\ell HD1}^{(S)} Y_l Y_l^{\dagger} Y_l Y_l^{\dagger} \right)^{\alpha\beta} - 3g_2^2 C_{\ell HW}^{(S)\alpha\beta} - 3g_2^2 C_{\ell HW}^{(S)\alpha\beta} - 3g_2^2 \left(C_{\ell HW} Y_l Y_l^{\dagger} \right)^{\alpha\beta} - 3C_{\ell \ell HD2}^{(S)\gamma\lambda\alpha\beta} \left[\lambda \left(Y_l \right)_{\lambda\gamma} \right] \\ &\left. - \left(Y_l Y_l^{\dagger} Y_l \right)_{\lambda\gamma} \right] - 2C_{\ell \ell HD2}^{(M)\gamma\lambda\alpha\beta} \left[\lambda \left(Y_l \right)_{\lambda\gamma} - \left(Y_l Y_l^{\dagger} Y_l \right)_{\lambda\gamma} \right] - 3C_{\ell \ell HH}^{(\gamma\alpha\beta)} \left[\lambda \left(Y_u^{\dagger} \right)_{\lambda\gamma} - \left(Y_u^{\dagger} Y_u Y_u^{\dagger} \right)_{\lambda\gamma} \right] + \alpha \leftrightarrow \beta \end{aligned}$$

RGEs of LNV Operators up to Dimension Seven

Examples for the final results ($\mathcal{O}_5^{\alpha\beta} = \overline{\ell_{\alpha L}} \widetilde{H} \widetilde{H}^T \ell_{\beta L}^c$, $\mathcal{O}_{\ell H}^{\alpha\beta} = \overline{\ell_{\alpha L}^c} \widetilde{H}^* \widetilde{H}^\dagger \ell_{\beta L} (H^\dagger H)$): DZ, 2023a;2023b

$$\begin{split} \dot{C}_{5}^{\alpha\beta} &= \frac{1}{2} \left(-3g_{2}^{2} + 4\lambda + 2T \right) C_{5}^{\alpha\beta} - \frac{3}{2} \left(Y_{1}Y_{1}^{\dagger}C_{5} \right)^{\alpha\beta} + \frac{m^{2} \left(8C_{H\square} - C_{HD} \right) C_{5}^{\alpha\beta}}{\left(Y_{1}Y_{1}^{\dagger}C_{5} \right)^{\alpha\beta} + 2g_{2}^{2} \left(2C_{(H)D1}^{(S)} + C_{(HD2}^{(S)+\alpha\beta} \right) + \left(Y_{1}Y_{1}^{\dagger}C_{(HD1}^{(S)+} \right)^{\alpha\beta} - \frac{1}{2} \left(Y_{1}Y_{1}^{\dagger}C_{(HD2}^{(S)+\alpha\beta} + 2\left(Y_{1}C_{1}^{\dagger}C_{1}^{\dagger} \right)^{\alpha\beta} \right) \\ &- \left(Y_{1}^{\dagger} \right)_{\gamma\lambda} \left(3C_{\ell\ell\ell\ell H}^{(S)+\alpha\beta} + 2C_{\ell\ell\ell\ell H}^{(M)+\gamma\lambda\alpha\beta} \right) - 3 \left(Y_{1}^{\dagger} \right)_{\gamma\lambda} C_{\ell\ell\ell H}^{*\alpha\lambda\beta} + 6 \left(Y_{u} \right)_{\lambda\gamma} C_{\ell\ell\ell H}^{*\gamma\lambda\alpha\beta} \right) \\ &+ \alpha \leftrightarrow \beta \end{split}$$

$$\dot{C}_{\ell H}^{(S)\alpha\beta} = \frac{1}{2} \mathrm{Tr} \left(C_{5}C_{5}^{\dagger} \right) C_{5}^{*\alpha\beta} + \frac{5}{4} \left(C_{5}^{\dagger}C_{5}C_{5}^{\dagger} \right)^{\alpha\beta} \\ &+ C_{5}^{*\alpha\beta} \left\{ -3C_{H} - \frac{3}{4} \left(g_{1}^{2} - g_{2}^{2} + 4\lambda \right) C_{HD} + \left(16\lambda - \frac{5}{3}g_{2}^{2} \right) C_{H\square} \\ &- 3g_{2}^{2}C_{HW} + \frac{3}{2} i \left(g_{1}^{2}C_{H\overline{B}} + 3g_{2}^{2}C_{H\overline{W}} + g_{1}g_{2}C_{H\overline{W}} \right) - \mathrm{Tr} \left[2g_{2}^{2} \left(C_{Hq}^{(3)} + \frac{1}{3}C_{H\ell}^{(3)} \right) + C_{eH}Y_{1}^{\dagger} + 3C_{dH}Y_{d}^{\dagger} \\ &+ 3Y_{u}C_{uH}^{\dagger} - 2 \left(Y_{1}^{\dagger}C_{H\overline{H}}^{(3)} + 3Y_{d}^{\dagger}C_{H\overline{H}}^{(3)} + 3Y_{u}^{\dagger}C_{H\overline{H}}^{(3)} \right) + 3 \left(Y_{u}C_{Hud}Y_{d}^{\dagger} + Y_{d}C_{Hud}Y_{u}^{\dagger} \right) \right] \right\} - 3g_{2} \left(C_{5}^{\dagger}Y_{1}C_{eH}^{\dagger} \right)^{\alpha\beta} \\ &- \frac{3}{2} \left(g_{1}^{2} + g_{2}^{2} \right) \left[\left(C_{5}^{\dagger}C_{H\overline{H}}^{(1)} \right)^{\alpha\beta} - \left(C_{5}^{\dagger}C_{H\overline{H}}^{(1)} \right)^{\alpha\beta} + \left(C_{5}^{\dagger}C_{eH}Y_{1}^{\dagger} \right)^{\alpha\beta} - 3 \left(C_{5}^{\dagger}Y_{1}Y_{1}^{\dagger} \right)^{\alpha\beta} \right] \\ &- \frac{1}{4} \left(3g_{1}^{2} + 15g_{2}^{2} - 80\lambda - 8T \right) C_{H}^{(S)\alpha\beta} - \frac{3}{2} \left(C_{\ell H}^{(S)}Y_{1}Y_{1}^{\dagger}Y_{1}^{\dagger} \right)^{\alpha\beta} - \left(C_{HD2}^{(S)}Y_{1}Y_{1}Y_{1}^{\dagger} \right)^{\alpha\beta} - \left(C_{HDD}^{(S)}Y_{1}Y_{1}Y_{1}^{\dagger} \right)^{\alpha\beta} - 3 \left(C_{\ell HD1}^{(S)}Y_{1}^{\dagger}Y_{1}Y_{1}^{\dagger} \right)^{\alpha\beta} \\ &- \frac{1}{4} \left(3g_{1}^{2} + 15g_{2}^{2} - 80\lambda - 8T \right) C_{H}^{(S)\alpha\beta} - \frac{3}{2} \left(C_{\ell H}^{(S)}Y_{1}Y_{1}Y_{1}^{\dagger}Y_{1}^{\dagger} \right)^{\beta} - \left(C_{HDD}^{(S)}Y_{1}Y_{1}Y_{1}^{\dagger} \right)^{\alpha\beta} \\ &- \frac{1}{4} \left(C_{\ell HD2}^{(S)}Y_{1}Y_{1}^{\dagger} \right)^{\alpha\beta} - \left(C_{\ell HD1}^{(S)}Y_{1}Y_{1}^{\dagger} \right)^{\alpha\beta} - \left(C_{\ell HD1}^{(S)}Y_{1}Y_{1}Y_{1}^{\dagger} \right)^{\beta} \\ &- \frac{1}{2} \lambda \left(C_{\ell HD2}^{(S)}Y_{1}Y_{1}^{\dagger} \right)^{\beta}$$

Used for a complete and consistent one-loop analysis of the SMEFT up to dimension seven 11

Q Applications

Non-renormalization Theorem

- Every operator O has the so-called holomorphic weight ω and antiholomophic weight $\overline{\omega}$
- For the same mass dimensional operators \mathcal{O}_i and \mathcal{O}_j , contributions from \mathcal{O}_j to the one-loop anomalous dimension matrix γ_{ij} of \mathcal{O}_i satisfies
- C. Cheung and C. H. Shen, 2015

$$\gamma_{ij}=0 \; ext{ if } \omega_i < \omega_j \; extbf{or } \overline{\omega}_i < \overline{\omega}_j$$

$$(4\pi)^2 \frac{dc_i}{d\log\mu} = \sum_j \gamma_{ij} c_j$$

But an exception in the SM(EFT), i.e., Yukawa couplings of nonholomorphic form, like $Y_{
m u}Y_{
m d,l}$

$$16\pi^2 \mu \frac{\mathrm{d}C_7^i}{\mathrm{d}\mu} = \frac{\gamma_{ij}^{(7,7)} C_7^j}{\gamma_{ij}^{(7,5)} C_7} + \gamma_i^{(7,5)} C_5 C_5 C_5 C_5 + \gamma_{ij}^{(7,6)} C_5 C_6^j$$

The structure of the one-loop anomalous dimension matrix γ_{ij} for dim-7 baryon-numberviolating operators

DZ, 2023b

Fully consistent with the above non-renormalization theorem!!!

$\gamma_{ij} egin{array}{cc} C_i \ (w_j, \overline{w}_j) \ C_i \ (w_i, \overline{w}_i) \end{array}$	$C^{(S)}_{ar{e}dddD} \ (5,3)$	$C^{(S)}_{ar{\ell}qddD}\ (5,3)$	$C^{(A)}_{\overline{e}qdd\widetilde{H}}\ (5,5)$	$C_{\overline{\ell} d q q \widetilde{H}} \ (5,5)$	$C_{ar{\ell} dud \widetilde{H}} \ (7,3)$	$C^{(M)}_{ar{\ell} dddH} \ (7,3)$
$C^{(S)}_{\overline{e}dddD} \ (5,3)$	g^2,y^2	y^2	0	0	0	0
$C^{(S)}_{ar{\ell}qddD}\ (5,3)$	y^2	g^2,y^2	0	0	0	0
$C^{(A)}_{ar{e}qdd\widetilde{H}}\ (5,5)$	g^2y,y^3	y^3	g^2,y^2	y^2	\overline{y}^2	0
$C_{\overline{\ell} dqq \widetilde{H}} \ (5,5)$	y^3	g^2y,y^3	y^2	g^2,y^2	\overline{y}^2	0
$C_{ar{\ell} dud \widetilde{H}} \ (7,3)$	y^3	g^2y,y^3	y^2	y^2	g^2,y^2	y^2
$C^{(M)}_{ar{\ell} dddH} \ (7,3)$	y^3	g^2y,y^3	0	0	y^2	g^2,y^2

Non-renormalization Theorem

Results for dim-7 baryon-number-conserving operators DZ, 2023b

$\gamma_{ij} egin{array}{cc} C_j \ (w_j, \overline{w}_j) \ C_i \ (w_i, \overline{w}_i) \end{array}$	$C^{(S)}_{\ell HD1} \ (3,5)$	$C^{(S)}_{\ell H D 2}$ (3,5)	$C^{(S)}_{\overline{d}u\ell\ell D} \ (3,5)$	$C^{(A)}_{\ell HB} \ (3,7)$	$C_{\ell HW}$ (3,7)	$C^{(S,A,M)}_{\overline{e}\ell\ell\ell H} \ (3,7)$	$\begin{array}{c} C_{\overline{d}\ell q\ell H1} \\ (3,7) \end{array}$	$\begin{array}{c} C_{\overline{d}\ell q\ell H2} \\ (3,7) \end{array}$	$C_{\ell eHD}$ (5,5)	$C_{\overline{d}\ell ueH} (5,5)$	$\begin{array}{c} C_{\bar{q}u\ell\ell H} \\ (5,5) \end{array}$	$C^{(S)}_{\ell H} \ (5,7)$
$C^{(S)}_{\ell HD1} \ (3,5)$	g^2,y^2	g^2,λ	y^2	0	0	0	0	0	0	0	0	0
$C^{(S)}_{\ell HD2} \ (3,5)$	g^2,y^2	g^2,y^2,λ	0	0	0	0	0	0	0	0	0	0
$C^{(S)}_{\overline{d}u\ell\ell D} \ (3,5)$	y^2	y^2	g^2,y^2	0	0	0	0	0	0	0	0	0
$C^{(A)}_{\ell HB} \ (3,7)$	gy^2	gy^2	0	g^2,y^2,λ	g^2	gy	gy	0	0	0	0	0
$C_{\ell HW} \ (3,7)$	g^3,gy^2	g^3,gy^2	0	g^2	g^2,y^2,λ	gy	gy	gy	0	0	0	0
$C^{(S,A,M)}_{\overline{e}\ell\ell\ell H} \ (3,7)$	g^2y,y^3	g^2y,y^3	0	gy	gy	g^2,y^2	y^2	y^2	0	0	\overline{y}^2	0
$C_{\overline{d}\ell q\ell H1} \ (3,7)$	g^2y,y^3	g^2y,y^3	g^2y,y^3	gy	gy	y^2	g^2,y^2	g^2,y^2	0	\overline{y}^2	\overline{y}^2	0
$C_{\overline{d}\ell q\ell H2} \ (3,7)$	g^2y,y^3	g^2y,y^3	g^2y,y^3	gy	gy	y^2	g^2,y^2	g^2,y^2	0	\overline{y}^2	\overline{y}^2	0
$C_{\ell eHD} \ (5,5)$	g^2y,y^3	$g^2y,\lambda y,y^3$	0	0	0	0	0	0	g^2,y^2,λ	y^2	0	0
$C_{\overline{d}\ell ueH} \ (5,5)$	y^3	y^3	g^2y, y^3	0	0	0	y^2	y^2	y^2	g^2, y^2	y^2	0
$C_{\overline{q}u\ell\ell H} \ (5,5)$	g^2y,y^3	g^2y,y^3	g^2y, y^3	0	0	y^2	y^2	y^2	0	y^2	g^2,y^2	0
$C^{(S)}_{\ell H} \ (5,7)$	$\overline{g^4,\lambda g^2,} \ \lambda y^2,y^4$	$g^4,\lambda g^2,\ \lambda y^2,y^4$	0	0	g^3,gy^2	$\lambda y, y^3$	$\lambda y, y^3$	0	$\lambda y, g^2 y, y^3$	0	$\lambda y, y^3$	g^2, y^2, λ

Radiative Corrections to Neutrino Masses

Neutrino masses in the SMEFT:

$$M_{\nu}\left(\Lambda_{\rm EW}\right) = -\frac{v^2}{2} \left[C_5\left(\Lambda_{\rm EW}\right) + v^2 C_{\ell H}^{\left(S\right)\dagger}\left(\Lambda_{\rm EW}\right) \right]$$

The leading-logarithmic approximation:

$$\begin{split} \delta M_{\nu}^{\alpha\beta} &= -\frac{v^2}{2} \frac{1}{16\pi^2} \ln \left(\frac{v}{\Lambda} \right) \left\{ C_5^{\alpha\beta} \left[-3g_2^2 + 4\lambda + 6 \operatorname{Tr} \left(Y_{\mathrm{u}} Y_{\mathrm{u}}^{\dagger} \right) \right] \right. \\ &+ 2v^2 C_5^{\alpha\beta} \left[-3C_H + \left(8\lambda - \frac{5}{3}g_2^2 \right) C_{H\square} - \left(2\lambda + \frac{3}{4}g_1^2 - \frac{3}{4}g_2^2 \right) C_{HD} - 3g_2^2 C_{HW} \right. \\ &- \frac{3}{2} \mathrm{i} \left(g_1^2 C_{H\widetilde{B}} + 3g_2^2 C_{H\widetilde{W}} + g_1 g_2 C_{H\widetilde{W}B} \right) + \frac{1}{2} \operatorname{Tr} \left(C_5 C_5^{\dagger} \right) - \frac{2}{3}g_2^2 \operatorname{Tr} \left(3C_{Hq}^{(3)\dagger} + C_{H\ell}^{(3)\dagger} \right) \\ &- 3 \operatorname{Tr} \left(C_{uH} Y_{\mathrm{u}}^{\dagger} \right) + 6 \operatorname{Tr} \left(Y_{\mathrm{u}}^{\dagger} C_{Hq}^{(3)\dagger} Y_{\mathrm{u}} \right) \right] + \frac{5}{2} v^2 \left(C_5 C_5^{\dagger} C_5 \right)^{\alpha\beta} + \frac{3}{2} \left(g_1^2 + g_2^2 \right) v^2 \\ &\times \left[\left(C_{H\ell}^{(3)\dagger} C_5 \right)^{\alpha\beta} + \left(C_{H\ell}^{(3)\dagger} C_5 \right)^{\beta\alpha} - \left(C_{H\ell}^{(1)\dagger} C_5 \right)^{\alpha\beta} - \left(C_{H\ell}^{(1)\dagger} C_5 \right)^{\beta\alpha} \right] \right\} \end{split}$$

- The small down-type quark and lepton Yukawa couplings, and contributions from dim-7 operators are ignored
- Apart from the C₅ cubic term in red, the above result is consistent with that obtained in [M. Chala, A. Titov, 2021]

Comes from two redundant

Radiative Corrections to Neutrino Masses

Numerical analysis in [M. Chala, A. Titov, 2021]: one generation

FIG. 2. Impact of dimension-six interactions on the size of the leading-logarithmic correction to M_{ν} as a function of α_H for different values of the new physics scale Λ . The Wilson coefficients of other dimension-six operators have been set to their best-fit values from [44]. Dimension-seven operators have been assumed to vanish. See the text for further details.

Corrections from insertion of dim-5 + dim-6 operators can reach 50% of those purely from the dim-5 operator for $\Lambda = 1$ TeV, depending on the Wilson coefficient of $\mathcal{O}_H = (H^{\dagger}H)^3$

Q Summary

Summary

- □ A Green's basis and a new physical basis for the SMEFT dim-7 operators are proposed
- The reduction relations between the above two bases have been achieved, where some redundant dim-6 operators are involved
- □ With the above bases, the complete one-loop RGEs for the dim-5 and dim-7 operators up to $O(\Lambda^{-3})$ have been derived for the first time
- These results can be used for a complete and consistent one-loop analysis of the SMEFT up to dimension seven

THANKS FOR YOUR ATTENTION

The number of independent operators in the SMEFT:

IBP, Fierz transformations, Algebraic relations, Field Redefinitions (or equations of motion)

Hilbert series method

Operator-counting packages: Basisgen (J. C. Criado, 2019) and Sym2Int (R. M. Fonseca, 2019)

The number of operators **Field ingredients in operators**

Lorentz and gauge invariant structure of operators

How to construct a complete operator basis:

> Brute force (enumeration) method

dim-5	S. Weinberg, 1979 Unique	
dim-6	W. Buchmuller, D. Wyler, 1986; B. Grzadkowski et al, 2010	24 years!!!
dim-7	L. Lehman, 2014; Y. Liao, X. D. Ma, 2016; 2019	Not so satisfactory
dim-8	C. W. Murphy, 2020	
dim-9	Y. Liao, X. D. Ma, 2020	

> Amplitude operator correspondence and group theoretic techniques

dim-8	H. L. Li	et al, 2021a	Mathematica package: ABC4EFT (Amplitude Basis Construction for Effective Field Theories)
dim-9	H. L. Li	et al, 2021b	H. L. Li et al, 2022
un to di	m-12	R V Harlander T	Kempkens M C Schaaf 2023

Package: AutoEFT (re-implementation of the algorithm of ABC4EFT)

> On-shell amplitude method

up to dim- 6 T. Ma, J. Shu, M. L. Xiao, 2019; R. Aoudea, C. S. Machado, 2019; Zi-Yu Dong et al, 2022

up to dim- 8 G. Durieux, C. S. Machado, 2019; M. A. Hubera, S. De Angelis, 2021

Mathematica package: MassiveGraphs S. De Angelis, 2022

 $\mathcal{O}_{\bar{e}\ell\ell\ell H}^{\alpha\beta\gamma\lambda} + \mathcal{O}_{\bar{e}\ell\ell\ell H}^{\alpha\lambda\gamma\beta} - \mathcal{O}_{\bar{e}\ell\ell\ell H}^{\alpha\lambda\beta\gamma} - \mathcal{O}_{\bar{e}\ell\ell\ell H}^{\alpha\gamma\beta\lambda} = 0 , \qquad \text{Mixed symmetries among flavor} \\ \mathcal{O}_{\bar{\ell}dddH}^{\alpha\beta\gamma\lambda} + \mathcal{O}_{\bar{\ell}dddH}^{\alpha\beta\gamma\lambda} = 0 , \qquad \mathcal{O}_{\bar{\ell}dddH}^{\alpha\beta\gamma\lambda} + \mathcal{O}_{\bar{\ell}dddH}^{\alpha\gamma\lambda\beta} + \mathcal{O}_{\bar{\ell}dddH}^{\alpha\lambda\beta\gamma} = 0 , \qquad \text{indices of repeated fermion fields}$

Decomposing operators to those with explicit (mixed) symmetries in the flavor space

- Fermion fields can be regarded as the fundamental representation of SU(n) or U(n) flavor symmetry with n being the number of generations (flavors)
- Operators with several identical fermion fields denote the tensor of SU(n), and can be decomposed to direct sums of irreducible representations of SU(n)
- Repeated fermion fields transform under SU(n) as Young tableau

> Tensor decomposition:

Examples: DZ, 2023a

Operator with non-trivial flavor relations $\mathcal{O}_{\overline{e}dddD}^{\alpha\beta\gamma\lambda} = \mathcal{O}_{\overline{e}dddD}^{(S)\alpha\beta\gamma\lambda} + \mathcal{O}_{\overline{e}dddD}^{(A)\alpha\beta\gamma\lambda} + \mathcal{O}_{\overline{e}dddD}^{(M)\alpha\beta\gamma\lambda} + \mathcal{O}_{\overline{e}dddD}^{(M')\alpha\beta\gamma\lambda}$ $\mathcal{O}_{\bar{e}dddD}^{(S)\alpha\beta\gamma\lambda} = \frac{1}{6} \left(\mathcal{O}_{\bar{e}dddD}^{\alpha\beta\gamma\lambda} + \mathcal{O}_{\bar{e}dddD}^{\alpha\lambda\beta\gamma} + \mathcal{O}_{\bar{e}dddD}^{\alpha\gamma\lambda\beta} + \mathcal{O}_{\bar{e}dddD}^{\alpha\beta\lambda\gamma} + \mathcal{O}_{\bar{e}dddD}^{\alpha\gamma\beta\lambda} + \mathcal{O}_{\bar{e}dddD}^{\alpha\lambda\gamma\beta} \right)$ $\mathcal{O}_{ar{e}dddD}^{(A)lphaeta\gamma\lambda} = rac{1}{6} \left(\mathcal{O}_{ar{e}dddD}^{lphaeta\gamma\lambda} + \mathcal{O}_{ar{e}dddD}^{lphaeta\gamma} + \mathcal{O}_{ar{e}dddD}^{lpha\gamma\lambdaeta\beta} - \mathcal{O}_{ar{e}dddD}^{lphaeta\lambda\gamma} - \mathcal{O}_{ar{e}dddD}^{lpha\gammaeta} - \mathcal{O}_{ar{e}dddD}^{lpha\gammaeta} ight) ight)$ $\mathcal{L} = rac{1}{6} \left[\left(Y^{\dagger}_{\mathrm{d}} ight)_{\lambda ho} \mathcal{O}^{lpha ho eta \gamma}_{ar{e} q d d \widetilde{H}} + \left(Y^{\dagger}_{\mathrm{d}} ight)_{\gamma ho} \mathcal{O}^{lpha ho \lambda eta}_{ar{e} q d d \widetilde{H}} + \left(Y^{\dagger}_{\mathrm{d}} ight)_{eta ho} \mathcal{O}^{lpha ho \gamma \lambda}_{ar{e} q d d \widetilde{H}} ight] \; ,$ $\mathcal{O}^{(M)lphaeta\gamma\lambda}_{ar{e}ddD} = rac{1}{3} \left(\mathcal{O}^{lphaeta\gamma\lambda}_{ar{e}dddD} + \mathcal{O}^{lpha\lambda\gammaeta}_{ar{e}dddD} - \mathcal{O}^{lphaeta\lambda\gamma}_{ar{e}dddD} - \mathcal{O}^{lpha\lambda\gamma}_{ar{e}dddD} ight)$ $\mathcal{O}_{\overline{e}dddD}^{(M')lphaeta\gamma\lambda} = rac{1}{3} \left(\mathcal{O}_{\overline{e}dddD}^{lphaeta\gamma\lambda} + \mathcal{O}_{\overline{e}dddD}^{lphaeta\lambda\gamma} - \mathcal{O}_{\overline{e}dddD}^{lpha\lambda\gammaeta} - \mathcal{O}_{\overline{e}dddD}^{lpha\lambda\beta\gamma} ight)$ $\mathcal{L} = rac{1}{3} \left[\left(\mathcal{O}_{\overline{e}dddD}^{lpha\lambdaeta\gamma} + \mathcal{O}_{\overline{e}dddD}^{lpha\gammaeta\lambda} - \mathcal{O}_{\overline{e}dddD}^{lpha\beta\lambda\gamma} - \mathcal{O}_{\overline{e}dddD}^{lpha\gamma\lambdaeta} ight) + \left(\mathcal{O}_{\overline{e}dddD}^{lpha\beta\gamma\lambda} - \mathcal{O}_{\overline{e}dddD}^{lpha\gamma\lambda} ight) ight]$ $\left(\mathcal{O}_{ar{e}dddD}^{lpha\gamma\lambdaeta}-\mathcal{O}_{ar{e}dddD}^{lpha\lambda\gammaeta} ight)-2\left(\mathcal{O}_{ar{e}dddD}^{lpha\lambdaeta\gamma}-\mathcal{O}_{ar{e}dddD}^{lpha\lambda\gamma} ight) ight]$ $\mathcal{L} = rac{1}{3} \left[(Y_l)_{ holpha} \mathcal{O}^{ ho\gamma\beta\lambda}_{ar{\ell}ddH} + \left(Y^{\dagger}_{ m d} ight)_{\lambda ho} \mathcal{O}^{lpha ho\beta\gamma}_{ar{e}qdd\widetilde{H}} + \left(Y^{\dagger}_{ m d} ight)_{eta ho} \mathcal{O}^{lpha\gamma\lambda\lambda}_{ar{e}qdd\widetilde{H}} - 2 \left(Y^{\dagger}_{ m d} ight)_{\gamma ho} \mathcal{O}^{lpha ho\lambda\beta}_{ar{e}qdd\widetilde{H}} ight]$ $\mathcal{O}_{\overline{e}dddD}^{lphaeta\gamma\lambda} - \mathcal{O}_{\overline{e}dddD}^{lpha\gammaeta\lambda} = \left(Y_{\mathrm{d}}^{\dagger} ight)_{\lambda ho} \mathcal{O}_{\overline{e}qdd\widetilde{H}}^{lpha hoeta\gamma}$ $\mathcal{O}_{\bar{e}dddD}^{\alpha\beta\gamma\lambda} + \mathcal{O}_{\bar{e}dddD}^{\alpha\lambda\gamma\beta} - \gamma \leftrightarrow \lambda = (Y_l)_{\rho\alpha} \, \mathcal{O}_{\bar{\ell}dddH}^{\rho\beta\gamma\lambda}$

The remaining combinations are free from (linearly independent of) all (non-trivial) flavor relations

- For one-loop matchings and calculations of RGEs with Feynman diagrammatic approach, usually offshell scheme is used and hence only 1PI diagrams are involved
- In such a case, the so-called Green's basis is needed, which is directly related to 1PI Green's functions M. Jiang et al, 2019; V. Gherardi, D. Marzocca, E. Venturini, 2020
- Operators in the Green's basis are independent in the sense of IBP, Fierz transformations, Algebraic relations, but NOT EoMs
- Operators in the Green's basis can be converted to those in the physical basis with the help of EoMs

$\psi^2 H^4$				$\psi^2 H^3 D$						
$\mathcal{O}_{\ell H}$	$\epsilon^{ab}\epsilon^{de}\left(\ell^a_{ m L}C\ell^d_{ m L} ight)H^bH^e\left(H^\dagger H ight)$	$\frac{1}{2}n(n+1)$	$\mathcal{O}_{\ell eHD}$	$\epsilon^{ab}\epsilon^{de}\left(\ell^a_{ m L}C\gamma_\mu E_{ m R} ight)H^bH^d{ m i}D^\mu H^e$	n^2					
$\psi^2 H^2 D^2$				$\overline{\psi^4 H}$						
$\mathcal{O}_{\ell HD1}$	$\epsilon^{ab}\epsilon^{de}\left(\ell^a_{ m L}CD^\mu\ell^b_{ m L} ight)H^dD_\mu H^e$	n^2	$\mathcal{O}_{\overline{e}\ell\ell\ell H}$	$\epsilon^{ab}\epsilon^{de}\left(\overline{E_{ m R}}\ell_{ m L}^{a} ight)\left(\ell_{ m L}^{b}C\ell_{ m L}^{d} ight)H^{e}$	$\frac{1}{3}n^2(2n^2+1)$					
$\mathcal{O}_{\ell HD2}$	$\epsilon^{ad}\epsilon^{be}\left(\ell^a_{ m L}CD^\mu\ell^b_{ m L} ight)H^dD_\mu H^e$	n^2	$\mathcal{O}_{\overline{d}\ell q\ell H1}$	$\epsilon^{ab}\epsilon^{de}\left(\overline{D_{ m R}}\ell_{ m L}^{a} ight)\left(Q_{ m L}^{b}C\ell_{ m L}^{d} ight)H^{e}$	n^4					
$\mathcal{R}_{\ell HD3}$	$\epsilon^{ad}\epsilon^{be}\left(\ell^a_{ m L}C\ell^b_{ m L} ight)D^\mu H^d D_\mu H^e$	$\frac{1}{2}n(n+1)$	$\mathcal{O}_{\overline{d}\ell q\ell H2}$	$\epsilon^{ad}\epsilon^{be}\left(\overline{D_{\mathrm{R}}}\ell_{\mathrm{L}}^{a} ight)\left(Q_{\mathrm{L}}^{b}C\ell_{\mathrm{L}}^{d} ight)H^{e}$	n^4					
$\mathcal{R}_{\ell HD4}$	$\epsilon^{ad}\epsilon^{be}\left(D^{\mu}\ell^{a}_{ m L}CD_{\mu}\ell^{b}_{ m L} ight)H^{d}H^{e}$	$\frac{1}{2}n(n+1)$	$\mathcal{O}_{\overline{d}\ell ueH}$	$\epsilon^{ab}\left(\overline{D_{ m R}}\ell_{ m L}^{a} ight)\left(U_{ m R}CE_{ m R} ight)H^{b}$	n^4					
$\mathcal{R}_{\ell HD5}$	$\epsilon^{ab}\epsilon^{de}\left(\ell^a_{ m L}C\sigma_{\mu u}D^\mu\ell^b_{ m L} ight)H^dD^ u H^e$	n^2	$\mathcal{O}_{\overline{q}u\ell\ell H}$	$\epsilon^{ab}\left(\overline{Q_{ m L}}U_{ m R} ight)\left(\ell_{ m L}C\ell_{ m L}^{a} ight)H^{b}$	n^4					
$\mathcal{R}_{\ell HD6}$	$\epsilon^{ad}\epsilon^{be}\left(D^{\mu}\ell^{a}_{ m L}C\sigma_{\mu u}D^{ u}\ell^{b}_{ m L} ight)H^{d}H^{e}$	$\frac{1}{2}n(n+1)$	$\mathcal{O}_{\overline{\ell} dud\widetilde{H}}$	$\left(\overline{\ell_{\mathrm{L}}}D_{\mathrm{R}} ight)\left(U_{\mathrm{R}}CD_{\mathrm{R}} ight)\widetilde{H}$	n^4					
$\psi^2 H^2 X$				$\left(\overline{\ell_{\mathrm{L}}}D_{\mathrm{R}} ight)\left(D_{\mathrm{R}}CD_{\mathrm{R}} ight)H$	$rac{1}{3}n^2\left(n^2-1 ight)$					
$\mathcal{O}_{\ell HB}$	$\epsilon^{ab}\epsilon^{de}\left(\ell^a_{ m L}C\sigma_{\mu u}\ell^d_{ m L} ight)H^bH^eB^{\mu u}$	$\frac{1}{2}n(n-1)$	$\mathcal{O}_{\overline{e}qdd\widetilde{H}}$	$\epsilon^{ab}\left(\overline{E_{ m R}}Q_{ m L}^{a} ight)\left(D_{ m R}CD_{ m R} ight)\widetilde{H}^{b}$	$rac{1}{2}n^3(n-1)$					
$\mathcal{O}_{\ell HW}$	$\epsilon^{ab} \left(\epsilon \sigma^{I}\right)^{de} \left(\ell^{a}_{\mathrm{L}} C \sigma_{\mu\nu} \ell^{d}_{\mathrm{L}}\right) H^{b} H^{e} W^{I\mu\nu}$	n^2	$\mathcal{O}_{\overline{\ell} dqq \widetilde{H}}$	$\epsilon^{ab}\left(\overline{\ell_{ m L}}D_{ m R} ight)\left(Q_{ m L}CQ_{ m L}^a ight)\widetilde{H}^b$	n^4					
$\psi^4 D$										
$\mathcal{O}_{\overline{e}dddD}$	$\left(\overline{E_{\mathrm{R}}}\gamma_{\mu}D_{\mathrm{R}} ight)\left(D_{\mathrm{R}}C\mathrm{i}D^{\mu}D_{\mathrm{R}} ight)$	n^4	$\mathcal{O}_{\overline{\ell}qddD}$	$\left(\overline{\ell_{\mathrm{L}}}\gamma_{\mu}Q_{\mathrm{L}} ight)\left(D_{\mathrm{R}}C\mathrm{i}D^{\mu}D_{\mathrm{R}} ight)$	n^4					
$\mathcal{O}_{\overline{d}u\ell\ell D}$	$\epsilon^{ab}\left(\overline{D_{ m R}}\gamma_{\mu}U_{ m R} ight)\left(\ell_{ m L}^{a}C{ m i}D^{\mu}\ell_{ m L}^{b} ight)$	n^4	$\mathcal{R}_{\overline{\ell} dDqd}$	$\left(\ell_{ m L}D_{ m R} ight)\left({ m i}D^{\mu}Q_{ m L}C\gamma_{\mu}D_{ m R} ight)$	n^4					
$\overline{\mathcal{R}}_{\overline{d}\ell\ell Du}$	$\epsilon^{ab}\left(\overline{D_{ m R}}\ell_{ m L}^{a} ight)\left(\ell_{ m L}^{b}C\gamma_{\mu}{ m i}D^{\mu}U_{ m R} ight)$	n^4	$\mathcal{R}_{\overline{\ell} dq Dd}$	$\left(\overline{\ell_{ m L}}D_{ m R} ight)\left(Q_{ m L}C\gamma_{\mu}{ m i}D^{\mu}D_{ m R} ight)$	n^4					
$\mathcal{R}_{\overline{d}D\ell\ell u}$	$\epsilon^{ab}\left(\overline{D_{ m R}}{ m i}D^{\mu}\ell_{ m L}^{a} ight)\left(\ell_{ m L}^{b}C\gamma_{\mu}U_{ m R} ight)$	n^4								

$$\begin{split} \mathcal{O}_{\ell H}^{\alpha\beta} &- \mathcal{O}_{\ell H}^{\beta\alpha} = 0 \ , \\ \mathcal{O}_{\ell HB}^{\alpha\beta} &+ \mathcal{O}_{\ell HB}^{\beta\alpha} = 0 \ , \\ \mathcal{O}_{\bar{e}qdd\tilde{H}}^{\alpha\beta\gamma\lambda} &+ \mathcal{O}_{\bar{e}qdd\tilde{H}}^{\alpha\beta\lambda\gamma} = 0 \ , \\ \mathcal{O}_{\bar{e}qdd\tilde{H}}^{\alpha\beta\gamma\lambda} &+ \mathcal{O}_{\bar{e}\ell\ell\ell H}^{\alpha\lambda\gamma\beta} - \mathcal{O}_{\bar{e}\ell\ell\ell H}^{\alpha\gamma\beta\lambda} - \mathcal{O}_{\bar{e}\ell\ell\ell H}^{\alpha\gamma\beta\lambda} = 0 \ , \\ \mathcal{O}_{\bar{e}\ell\ell\ell H}^{\alpha\beta\gamma\lambda} &+ \mathcal{O}_{\bar{e}\ell\ell\ell H}^{\alpha\beta\lambda\gamma} = 0 \ , \quad \mathcal{O}_{\bar{\ell}dddH}^{\alpha\beta\gamma\lambda} + \mathcal{O}_{\bar{\ell}dddH}^{\alpha\gamma\lambda\beta} + \mathcal{O}_{\bar{\ell}dddH}^{\alpha\lambda\beta\gamma} = 0 \ , \end{split}$$

$$\begin{split} \mathcal{R}^{\alpha\beta}_{\ell HD3} &- \mathcal{R}^{\beta\alpha}_{\ell HD3} = 0 , \\ \mathcal{R}^{\alpha\beta}_{\ell HD4} &- \mathcal{R}^{\beta\alpha}_{\ell HD4} = 0 , \\ \mathcal{R}^{\alpha\beta}_{\ell HD6} &- \mathcal{R}^{\beta\alpha}_{\ell HD6} = 0 . \end{split}$$

(. X. Li , Z. Ren , . H. Yu, 2023

No non-trivial flavor relationsAlso decomposed as SU(3) tensor23

A list of dim-6 operator in the Greens basis involved in reduction relations for dim-7 operators

$$\begin{array}{cccc} \mathcal{R}_{2W} & -\frac{1}{2} \left(D_{\mu} W^{I\mu\nu} \right) \left(D^{\rho} W_{\rho\nu}^{I} \right) & \mathcal{R}_{WDH} & D_{\nu} W^{I\mu\nu} \left(H^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu}^{I} H \right) & \mathcal{R}_{DH} & \left(D_{\mu} D^{\mu} H \right)^{\dagger} \left(D_{\nu} D^{\nu} H \right) \\ \mathcal{R}_{HD}' & \left(H^{\dagger} H \right) \left(D_{\nu} H \right)^{\dagger} \left(D^{\mu} H \right) & \mathcal{R}_{HD}' & \left(H^{\dagger} H \right) D_{\mu} \left(H^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} H \right) & \mathcal{R}_{\ell D}^{\alpha\beta} & \frac{1}{2} \overline{\ell_{\alpha L}} \left\{ D_{\mu} D^{\mu}, \not{p} \right\} \ell_{\beta L} \\ \mathcal{R}_{uHD1}^{\alpha\beta} & \left(\overline{Q_{\alpha L}} U_{\beta R} \right) D_{\mu} D^{\mu} \widetilde{H} & \mathcal{R}_{uHD2}^{\alpha\beta} & \left(\overline{Q_{\alpha L}} \mathrm{i} \sigma_{\mu\nu} D^{\mu} U_{\beta R} \right) D^{\nu} \widetilde{H} & \mathcal{R}_{uHD4}^{\alpha\beta} & \left(\overline{Q_{\alpha L}} D^{\mu} U_{\beta R} \right) D^{\mu} \widetilde{H} \\ \mathcal{R}_{dHD1}^{\alpha\beta} & \left(\overline{Q_{\alpha L}} D_{\beta R} \right) D_{\mu} D^{\mu} H & \mathcal{R}_{dHD2}^{\alpha\beta} & \left(\overline{Q_{\alpha L}} \mathrm{i} \sigma_{\mu\nu} D^{\mu} D_{\beta R} \right) D^{\nu} H & \mathcal{R}_{dHD4}^{\alpha\beta} & \left(\overline{Q_{\alpha L}} D_{\mu} D_{\beta R} \right) D^{\mu} H \\ \mathcal{R}_{eHD1}^{\alpha\beta} & \left(\overline{\ell_{\alpha L}} \mathcal{E}_{\beta R} \right) D_{\mu} D^{\mu} H & \mathcal{R}_{eHD2}^{\alpha\beta} & \left(\overline{\ell_{\alpha L}} \mathrm{i} \sigma_{\mu\nu} D^{\mu} \mathcal{E}_{\beta R} \right) D^{\nu} H & \mathcal{R}_{eHD4}^{\alpha\beta} & \left(\overline{\ell_{\alpha L}} D_{\mu} \mathcal{E}_{\beta R} \right) D^{\mu} H \\ \mathcal{R}_{W\ell}^{\alpha\beta} & \frac{1}{2} \left(\overline{\ell_{\alpha L}} \sigma^{I} \gamma^{\mu} \mathrm{i} \overleftrightarrow{D}^{\nu} \ell_{\beta L} \right) W_{\mu\nu}^{I} & \mathcal{R}_{W\ell}^{\alpha\beta} & \frac{1}{2} \left(\overline{\ell_{\alpha L}} \sigma^{I} \gamma^{\mu} \mathrm{i} \overleftrightarrow{D}^{\nu} \ell_{\beta L} \right) \widetilde{W}_{\mu\nu}^{I} & \mathcal{R}_{H\ell}^{\alpha\beta} & \left(\overline{\ell_{\alpha L}} \gamma^{\mu} \mathrm{i} \overleftrightarrow{D}^{\nu} \ell_{\beta L} \right) \partial_{\mu} \left(H^{\dagger} H \right) \\ \mathcal{R}_{H\ell}^{\prime(3)\alpha\beta} & \left(\overline{\ell_{\alpha L}} \sigma^{I} \gamma^{\mu} \ell_{\beta L} \right) D_{\mu} \left(H^{\dagger} \sigma^{I} H \right) & \mathcal{R}_{H\ell}^{\prime(3)\alpha\beta} & \left(\overline{\ell_{\alpha L}} \sigma^{I} \gamma^{\mu} \ell_{\beta L} \right) D_{\mu} \left(H^{\dagger} \sigma^{I} H \right) \end{array}$$

Table 3: Dim-6 operators in the Green's basis converted to physical operators with the help of EOMs of the lepton and Higgs doublets. They may give contributions to the RGEs of the dim-5 and dim-7 operators. The dual tensors are defined by $\tilde{X}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} X^{\rho\sigma}$ with $\epsilon_{0123} = +1$ and X denoting W^{I} and B.

Non-renormalization Theorem without SUSY

C. Cheung and C. H. Shen, 2015

Z. Bern, J. Parra-Martinez and E. Sawyer, 2019

Each operator \mathcal{O} (or on-shell amplitude) has the so-called holomorphic weight ω and

antiholomophic weight $\overline{\omega}$, defined as $w(\mathcal{O}) = n(\mathcal{O}) - h(\mathcal{O}), \qquad \overline{w}(\mathcal{O}) = n(\mathcal{O}) + h(\mathcal{O})$

 $n(\mathcal{O})$ is the number of particles created by \mathcal{O} and $h(\mathcal{O})$ is their total helicity

\mathcal{O}	${F}_{lphaeta}$	ψ_{lpha}	ϕ	$ar{\psi}_{\dot{lpha}}$	$\bar{F}_{\dot{\alpha}\dot{\beta}}$
h	+1	+1/2	0	-1/2	-1
(w, \bar{w})	(0, 2)	(1/2, 3/2)	(1, 1)	(3/2, 1/2)	(2, 0)

An operator \mathcal{O}_i can only be renormalized by an operator \mathcal{O}_j at one loop if the corresponding weights $(\omega_i, \overline{\omega}_i)$, and $(\omega_j, \overline{\omega}_i)$ satisfy the inequalities

 $\omega_i \geq \omega_j$ and $\overline{\omega}_i \geq \overline{\omega}_j$

and all Yukawa couplings are of a "holomorphic" form consistent with a superpotential.

Non-renormalization Theorem:

$$\gamma_{ij} = \mathbf{0} \text{ if } \boldsymbol{\omega}_i < \boldsymbol{\omega}_j \text{ or } \overline{\boldsymbol{\omega}}_i < \overline{\boldsymbol{\omega}}_j$$

$$(4\pi)^2 \frac{dc_i}{d\log\mu} = \sum_j \gamma_{ij} c_j$$

The exceptional amplitudes: $A(\psi^+\psi^+\psi^+\psi^+)$, $A(F^+\phi\phi\phi)$, $A(\psi^+\psi^+\phi\phi)$

Only the first one is involved in the SM(EFT) and proportional to the product of up-type and down-type Yukawa couplings, caused by Higgs doublet exchange, such as

Radiative Corrections to Neutrino Masses

Numerical analysis in [M. Chala, A. Titov, 2021]: one generation

FIG. 2. Impact of dimension-six interactions on the size of the leading-logarithmic correction to M_{ν} as a function of α_H for different values of the new physics scale Λ . The Wilson coefficients of other dimension-six operators have been set to their best-fit values from [44]. Dimension-seven operators have been assumed to vanish. See the text for further details.

FIG. 3. Relative size of the leading-logarithmic correction to M_{ν} as a function of Λ , with the Wilson coefficients of dimension-six operators set to zero (blue line) and to their best-fit values from [44] (red line). The band represents the variation of the Wilson coefficients of dimension-six operators across the 95% confidence level ranges derived in [44]. Dimension-seven operators have been assumed to vanish. See the text for further details.

■ Corrections from insertions of dim-5 + dim-6 operators can reach 50% of those from single insertions

of the dim-5 operator for $\Lambda = 1$ TeV, depending on the Wilson coefficient of $\mathcal{O}_H = (H^{\dagger}H)^3$

The relative size of the total correction is about 4%-8% compared to the tree-level neutrino mass for $\Lambda \in [1 \text{ TeV}, 3 \text{ TeV}]$