

CDCS

CENTER FOR DATA AND COMPUTING IN NATURAL SCIENCES

Revealing Connections in QCD with ML Patrick L.S. CONNOR (CDCS, Universität Hamburg), Antonin ŠULC (HZB)

•Complex structure behind apparent simplicity •Need to identify hot topics or unexplored connections Handbook may quickly get outdated

• Develop complementary methods to bibliometrics

Data

•InspireHEP data base •Only peer-reviewed articles •Relying on abstracts only

30, tpe, elastic

Method [1,2]

Document embedding **Dimension reduction**

Citation graph

25, viscosity, conductivity

38, base, color

32, critical, bubble 23,transparency,color 8, collision, fluctuation

Graphs

•One colour per topic • Each point corresponds to an article •The narrower the more focused a topic is •Blob size is proportional to the number of citations

Conclusions

•Topics loosely related to QCD are found at the edges of the map (e.g. 7, 31) •Existing and unexplored connections are visible in the embedding map •These connections are distinct from the ones suggested by the citation graph

 Identify key publications Identify anomalies Provide maps as a function time

