

Early-universe Massive-neutrino Yield

Tackling the experimental challenge to detect relic neutrinos with PTOLEMY

Federico Virzi

Università degli studi dell'Aquila

ICHEP24 19/07/2024

Cosmic Neutrino Background direct detection

- Most abundant neutrino source in the Universe!
- But extremely low Energy

 The only neutrino source at low energy

K_v≈10⁻⁴ eV

- Neutrinos do not provide energy for interaction
- Very difficult to detect:

How?

PTOLEMY Project

Cosmic Neutrino Background direct detection: PTOLEMY

- Neutrino capture on beta decaying Nuclei reaction
- Need beta unstable element
- Want maximize interaction with CNB

Solid Tritium target

PTOLEMY concept I

Tritium target

How to measure this?

Obtaining desired energy resolution: TES

18 july 2024, 08:47 R&D parallel session

Dedicated talk on fresh results by Francesco Pandolfi

Need σ_{κ} =50 meV

Transition Edge Sensor as microcaloremeter

We want to use them as microcaloremeters for electrons

Typically used for photons

PTOLEMY Energy measurement

7

PTOLEMY concept II

PTOLEMY filter

• Exponential decaying magnetic field • Exponential decaying electric field

PTOLEMY concept III

RF region: filter trigger

Very fast!

Requirements:

- Measurement K, O for each electron in the ROI
- In O(100 µs)
- Non destructive measurement
- Uniform 1T field

Electron spectroscopy with cyclotron radiation (CRES)

$$f_c = \frac{1}{2\pi} \frac{|q|B}{m} \frac{1}{K/m+1}$$

How

Thank you!

Cyclotron radiation In uniform 1T Bouncing motion

TOF information combined with TES

Electron Trap: test setup for RF Region

Ongoing measurements at LNGS

- Kr source
- 0.98T permanent magnet
- Detection of RF emitted by electron in bouncing motion

PTOLEMY concept IV

Filter trigger K and Θ, fast and rough measurement

Energy Drain +filter $\sigma_{\rm K}$ =50 meV

PTOLEMY Concept

The PTOLEMY Collaboration SAPIENZA UNIVERSITÀ DI ROM INFŃ PRINCETON PLASMA PHYSICS LABORATORY Stockholm University UNIVERSITÀ DEGLI STUDI DI GENOVA ✓ DEGLI STUDI UNIVERSITET Radboud University ROMA NRiM PRINCETON NIVERSITÀ DEGLI STUDI **BICOCC**Ă INFŃ UNIVERSITY UNIVERSITY Ň OF AMSTERDAM Nik hef Università di <u>Pisa</u> GRAN SASSO G S SCIENCE INSTITUTE SCHOOL OF ADVANCED STUDIE Kavli Institute for Cosmological Physics UNIVERSITÀ DEGLI STUDI DI NAPOLI at The University of Chicago FEDERICO II Argonne האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM 16

Conclusion and outlook

PTOLEMY

PonTecorvo Observatory for Light Early-universe Massive-neutrino Yield

Backup slides

Tritium-graphene binding

- Quantum spread
- Lattice recoil

Electron motion: uniform B, E=0

- Start with electron with velocity $v_{\rm 0}$
- Uniform B: electron in cyclotron motion +V_x drift
- Can approximate circular motion with circle's center motion
- Cyclotron radiation emission

Frequency of the motion

Electron Trap: electron motion

Cyclotron motion + X bouncing motion on potential well

Electron Trap: How the expected signal looks like

PTOLEMY filter

$$\overrightarrow{V}_{\nabla B} = +\frac{1}{2}V_{\perp}r_{L}\frac{\overrightarrow{\nabla}B\times\overrightarrow{B}}{B^{2}}$$

ExB demonstrator @ Princeton

• Test for PTOLEMY filter

Magnet prototype at Princeton

