Astrophysical neutrino search in KamLAND

Research Center for Neutrino Science, Tohoku University

Minori Eizuka, for KamLAND collaboration

e-mail: minori@awa.tohoku.ac.jp

2024/7/19 **Astro v search in KL, ICHEP2024@Prague** 1. Astro v search in KL, ICHEP2024@Prague 1. Astro 1/15

∼50 researchers from US, Netherlands, and Japan

2023 collaboration meeting @Obihiro

Kamioka Liquid-scintillator Anti-Neutrino Detector (KamLAND)

Astro- ν detection channel

Inverse Beta Decay (IBD) $\overline{\nu}_e + p \rightarrow n + e^+$

■ Neutrino energy is reconstructed from observed energy.

 $E_v \simeq E_{\text{prompt}} + T_n + 0.78 \text{ [MeV]}$

■ Space-time correlations are used for this observation (*delayed coincidence*).

Backgrounds

- \blacktriangleright Reactor \bar{v}_e
- \blacktriangleright Geo \bar{v}_e
- ► Accidental coincidence
- ► Spallation products (9Li)
- \blacktriangleright (α , n) interaction
- ► Atmospheric neutrino
- ► Fast neutron
- Indistinguishable from astro- ν events
- likelihood cut
	- muon veto, shower tag
- LS distillation
- hard to distinguish

 $12/31$

Date (UTC)

 2014

 $12/31$

2004

12/31

Event rate (/yr)

Event rate (yr)

2019

12/31

Supernova and neutrinos

Important information can be obtained from above neutrino observations.

SN Supernova neutrino burst search

Interpretation of search result SN

Constraint on the Galactic Star Formation Rate (SFR) SN

30

We attempted to constrain the Galactic SFR, which is important to understand our Galaxy.

First constraint from neutrino experiments

 $k_{\rm SN} = 0.0068 - 0.0088 M_{\odot}^{-1}$

 10^{-2}

S.Abe, et al, ApJ, 934 85 (2022)

 10^{-1}

 $\rm{k_{SN}}$ ($\rm{M_{\odot}^{11}}$)

Galactic SFR from this work and astronomical observations

Supernova relic neutrino search SRN

Latest results $E_{\text{prompt}} = 7.5 - 30 \text{ MeV}$ **Plans for improvements**

- ► Fitting of energy & radius distributions \rightarrow zero event best fit for all models
- \triangleright Model independent flux upper limit \rightarrow most stringent limit for 8–13 MeV

Model independent neutrino flux upper limit

Event discrimination using machine learning techniques

Atmospheric neutrino background SRN

- \blacksquare Atm. ν neutral current makes sequential events.
	- ► "Same" features as IBD for the delayed-coincidence method
	- ► Largest background in $E_{\text{prompt}} \ge 10 \text{ MeV}$

- Differences should appear in the prompt hit pattern.
	- \blacktriangleright Hit timing
	- ► Hit charge *Event discrimination using a neural network*
	- ► Hit position
- Given the lack of high-energy ($E_{\text{prompt}} \ge 10$ MeV) IBD and atm. ν candidates, a well tuned simulation is developed.

Hit timing distribution of simulation events

Event discrimination using a neural network: KamNet SRN

- KamNet is a spatiotemporal NN developed by KamLAND group. *A. Li, et al, Phys. Rev. C, 107 014323 (2023)*
	- ► Spherical neural network to **conserve detector's symmetry**
	- ► Convolutional long short-term memory to **incorporate time correlation**
	- ► Dropout to **avoid over training**

- Training have been done with tuned simulation events.
	- ► Separated KamNet score distribution (upper right)
		- → **Event discrimination is successful.**
	- ► Rejection efficiency saturation (lower right)
		- → **Training of KamNet is sufficient.**

Combined pre-SN alarm Pre-SN

Combined pre-SN alarm system by KamLAND & Super-Kamiokande (SK-Gd) has been launched.

KamLAND

Low background condition → **early alarm**

SK-Gd

Large fiducial volume

- → **rapid increase of significance**
- ► 22.5 kt water Cherenkov detector
- ► Neutron capture gamma-ray by Gd

Frequency of false-positive alarm *arXiv:2404.09920* calculated by MC (BG only)

Alarm with time profile Pre-SN

To improve the alarm sensitivity, time profile (shape) is incorporated with the number of event.

 $likelihood =$

 PDF (# of evt in time window) $\times PDF$ (time profile) "Rate term" "shape term"

 $likelihood ratio =$ $likelihood(BG + signal)$ likelihood(BG only)

Alarm sensitivity is improved due to the shape term.

 $15M_{\odot}$, 150 pc, Patton model with NO

Neutrinos from Primordial Black Hole PBH

10^{23} $M_{PBH} = 10^{13}$ g ► Hypothetical black hole $10²$ $M_{\rm PRH} = 10^{14}$ g uminosity [/MeV/s] $M_{PBH} = 10^{15}$ g Luminosity [/MeV/s] formed by gravitational collapse $10²$ Primary ----- Secondary in the early universe 10^{20} **Total** 10^{19} ► Dark matter candidate 10^{18} Primary 10^{17} $\frac{\nu_{aL}}{\nu_{aR}}$ $a = \{1, 2, 3\}$ Component \mathcal{L} 10^{16} 10^{0} $\bar{\nu}_{aL}$ 10^{1} $10⁴$ $\overline{\mathcal{L}}$ Only for Dirac ν_a Neutrino energy [MeV] $\bar{\nu}_{aR}$ \int Primary Event Horizon *Hawking radiation* Component

PBH neutrino search

- \triangleright Constraint on the PBH fraction $f_{\rm PBH}$ from the KamLAND's open data *S.Abe, et al, ApJ, 925 14 (2022)*
- ► Rejection of $f_{\rm PBH} = 1$ → **evidence of other dark matters**

Neutrino luminosity of PBH emission

Primordial Black Hole

- KamLAND, which is a 1 kt liquid scintillator, can search astrophysical neutrinos via inverse beta decay.
- There are no supernova neutrino candidates. We set upper limit on the Galactic supernova rate and Galactic star formation rate.
- For supernova relic neutrino search, a neural network analysis is in progress.
- Combined pre-supernova alarm system is running. Alarm with time profile is under development.
- KamLAND can also search neutrinos from primordial black hole. This study is ongoing.

2024/7/19 2024/7/19 **Astro v search in KL, ICHEP2024@Prague** 16 and 2024/7/19 2024/7/19 2024/7/19

Previous studies of SN burst search

Component of delayed coincidence events

spallation

12C spallation by cosmic muon (mainly by ⁹Li β^- + *n* decay)

accidental coincidence

decay of radioactive isotopes in detector components or rock (mainly by ²⁰⁸Tl 2.6 MeV γ)

atmospheric neutrino

prompt: charged lepton or de-excitation γ , delayed: neutron capture

reactor \bar{v}_e \bar{v}_e geo \bar{v}_e

inverse beta decay

(α, n) interaction

reaction of α -ray from ²¹⁰Po (radioactive impurity) and ¹³C prompt: 16O de-excitation or proton scatter, delayed: neutron capture

fast neutron

prompt: scattered proton by high-energy neutron delayed: neutron capture

Number of expected events/ detection probability with some models

Number of expected events by different neutrino detection channels

U_{lle} CI_{2-nuebar}

Channel

 $\frac{C_{l_{2}}}{C_{l_{2}}C_{l_{1}}C_{l_{2}}C_{l_{1}}C_{l_{2}}C_{l_{1}}C_{l_{2}}C_{l_{1}}C_{l_{2}}C_{l_{1}}$

 C_{l} C_{l} C_{l}

 C_{l2} C_{l}

Model dependence of detection probability

IBD only, time distribution is not considered Livermore model is within Nakazato model uncertainty

Counts

100 $5\overline{)}$

> $\overline{2}$ 10

> > $5⁵$

 $\overline{2}$ $\mathbf{1}$ $5\overline{)}$

 $\overline{2}$

 $i\!b_{Q'}$

 \mathbf{e}

Galactic supernova distribution

• SN distribution is used for detection Radial distribution of supernova Radial distribution of supernova **Souting Soutify Contract** Vertical distribution of supernova hsigma hRcc probability calculation by NC only analysis. Entries 500 Entries 400 0.015 6.3 Mean 0.05 0.3197 Std Dev 2.795 (A. U.) 0.15 r) $(A, U.)$ Radial distribution Rcc(z) (A.U.) 6

U
 U

_{0.005}

^{0.01} 0.1 $\sigma_{\rm cc}(r) \propto r^{\xi} \exp\left(-\frac{r}{v}\right)$ $R_{\rm cc}$ \overline{u} 0.005 0.05 This corresponds to $\xi = 4$ 0 0 0 10 20 30 −4 −2 0 2 4 $u = 1.25$ kpc the NS distribution z (kpc) r (kpc) z (kpc) r (kpc) r : radius from the Galactic center $d_{\odot} \sim 8.5$ kpc: solar distance from the Galactic center $d(r,z,\theta)=\left[r^{2}+z^{2}+d_{\bigodot}^{2}-2rd_{\bigodot}\text{cos}\theta\right] ^{1/2}\quad d$: distance from the solar Three-dimensional distribution of supernova Vertical distribution SN PDF (A, U) 0.08 $\left[-\left(\frac{z}{\sqrt{2}}\right)^2 + 0.21 \exp\left[-\left(\frac{z}{\sqrt{2}}\right)\right]\right]$ 7 $R_{\text{cc}}(z) \propto 0.79 \exp\left[-\left(\frac{z}{212}\right)\right]$ SN PDF(A.U.) SN PDF(A. U.) 0.06 212 pc 636 pc 0.04 z: distance from galactic plane Three-dimensional distribution 0.02 $n_{cc}(r, z) \propto \sigma_{cc}(r) R_{cc}(z)$ 0 0 10 20 30 d (kpc) d (kpc)

Calculation of star formation rate

• Supernova rate R_{SN} and star formation rate ψ_{SFR} are linked by following equation.

$$
R_{\rm SN}(z) = \frac{\int_{m_1^{\rm SN}}^{m_1^{\rm SN}} \phi_{\rm IMF}(m) dm}{\int_{m_1}^{m_{\rm u}} m \phi_{\rm IMF}(m) dm} \times \psi_{\rm SFR}(z) \equiv k_{\rm SN} \times \psi_{\rm SFR}(z)
$$

 \Box ϕ_{IMF} : Initial Mass Function, IMF number distribution of star as a function of mass

$$
\phi_{\rm IMF}=0.03\left(\frac{m}{M_{\odot}}\right)^{-\gamma}
$$

ם $m_u^{\rm SN}/m_l^{\rm SN}$: upper/lower limit of SN mass, 8–40 M_\odot m_u/m_l :upper/lower limit of stellar mass, 0.1– 100 M_{\odot}

 $k_{\text{SN}} = 0.0068 - 0.0088~M_{\odot}^{-1}$

Constraints on the SFR from astronomical observation

Murray & Rahman (2009) $0.9 < \psi_{\rm SFR}^{\rm gal} \ [M_{\odot} \rm{yr}^{-1}] < 2.2$

Robitaille & Whitney (2010) $0.68 < \psi_{\rm SFR}^{\rm gal} \ [M_{\odot} \rm{yr}^{-1}] < 1.45$

SFR set to reproduce observation result of Spitzer survey (infrared)

Chomiuk & Povich (2011)

$$
\psi_{\rm SFR}^{\rm gal} = 1.9 \pm 0.4 \, M_{\odot} \text{yr}^{-1}
$$

combined result of previous SFR estimations by normalizing with same initial mass function

Davis, et al (2011)

$$
1.5 < \psi_{\rm SFR}^{\rm gal} \, [M_{\odot} \text{yr}^{-1}] < 2.0
$$

SFR obtained by comparing simulation result and observed data of Midcourse Space Experiment

Licquia & Newman (2015)

$$
\psi_{\rm SFR}^{\rm gal} = 1.65 \pm 0.19 \, M_{\odot} \text{yr}^{-1}
$$

combined result of previous SFR estimations by Hierarchical Bayesian method

Simulation consistency check: signal

Simulation consistency check: background

- ► Fast neutron is used instead of atm. *v* candidate ($r \leq 650$ cm).
- \blacktriangleright Fast neutrons and atm. νs have similar hit information.
- ► **Background simulation is consistent with real data.**

KamNet: spatiotemporal deep neural network

Combined alarm system

Example of Alert Criteria

- Combined alarm system is running in both KamLAND and SK side. (redundancy system)
- BG number is average one over a past period. (KamLAND: 90 days, SK: 30 days)
- The system outputs **every 5 minutes**.
- If FAR \leq 1/century, an alarm will be sent **GCN circular.** \bullet

PBH_v flux on the Earth

Contributions from the Galaxy and outer Galaxy PBHy flux on the Earth $(f_{\text{PBH}} = 1)$

 $\Phi_{\text{tot}} = \Phi_{\text{EG}} + \Phi_{\text{Gal}}$

- Φ_{Gal} Flux from the Galaxy
	- ► Ignore redshift
	- \triangleright PBH distribution is assumed to be same as dark matter
- Φ_{EG} Flux from out of the Galaxy
	- ► Consider redshift
	- ► PBH distribution is assumed to be uniform

Neutrino oscillation

- ► Primary component (Hawking radiation)
- ► Secondary component (decay of particles)

 \mathbf{S}^{-1} $10²$ Φ [MeV⁻¹ cm⁻² 10 10 total 10^{-2} **Extra Galactic** Galactic 10^{-3} 10^2 Neutrino Energy [MeV]

All flavors of neutrinos are same amount \rightarrow ignore oscillation

Considering the oscillation, its effect on the PBH flux is $\leq 2\%$

 $10³$