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• NOvA is an accelerator-based neutrino experiment


- Longest baseline in operation (810 km), large matter effect, 
sensitive to mass ordering


• Muon neutrino beam (NuMI) at Fermilab 


- Two configurations: neutrino mode and antineutrino mode


- Power record 1.018 MW in 2024 (See poster from Katsuya)


• ~14 mrad off-axis, narrow-band beam around oscillation max
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NOvA: NuMI Off-Axis νe Appearance Experiment

Far Detector (on surface) 
at Ash River, MN

Near Detector (ND)
• 1 km from the neutrino 

beam target
• 100 m underground at 

Fermilab
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https://indico.cern.ch/event/1291157/contributions/5904056/
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NOvA Detectors

• FD and ND are functionally identical to minimize systematics


• Composed of highly reflective extruded PVC cells filled with liquid scintillator. Scintillation light 
captured and routed to Avalanche Photodiode (APD) via wavelength shifting fiber (WLS)


• Cells arranged in planes, assembled in alternating horizontal and vertical directions → provide 
3D views of the events
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Event Reconstruction at NOvA

• NOvA uses a variety of algorithms to reconstruct physics information


• Machine learning is making significant contribution in the reconstruction chain and can replace 
“traditional” kinematic based algorithms in some cases

Slicer Vertex 
Finding

Particle 
clustering

Particle  
ID/Energy

Event  
ID/Energy

Analysis

Hits belong to the same 
neutrino interaction Neutrino interaction point Hits belong to the 

same particle

Neutrino event identification using CNNs  -  JINST 11, P09001 (2016)
Particle identification using CNNs  -  Phys.Rev.D 100, 073005 (2019)

Neutrino and Lepton Energy estimation using CNNs  -  Phys. Rev. D 99, 012011 (2019)

This talk focuses on recent advancements on extending to vertex finding (VertexCVN) and 
improving robustness and interpretability (TransformerCVN) of ML techniques
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Detector Views
• NOvA detectors are naturally segmented


• Producing a pair of pixel maps (Cell number v.s. Plane 
number) for the Top and Side view of each interaction
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TransformerCVN for Event and Particle Classification
• Transformer: attention based network, ideal 

for training on variable-length collection of 
objects such as prongs


“TransformerCVN” = Transformer+CNN


• Combines the spatial learning enabled by 
convolutions with the contextual learning 
enabled by attention


• Classifies each event and reconstructs 
every individual particle’s identity


• Attention mechanisms 


• focus on regions with high importance, 
reduce the computing burden and 
enhance performance


• enable performing interpretability studies
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TransformerCVN for Event and Particle Classification

• Comparable performance of identifying neutrino flavors compared to our benchmark network - 
EventCVN


• Great improvement in particle identification, benefits from the additional context provided by all 
prongs and the transformer’s attention mechanism, compared to our benchmark network - ProngCVN
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TransformerCVN for Event and Particle Classification
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• Interpretability of the network


- Attention map: importance of each input to each output


• Diagnose neural network and explain decision


- Saliency map: derivative of a network output w.r.t the 
input pixel


• Study salience to understand which regions the 
Transformer focuses on to identify a particle
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Vertex Reconstruction
• Apply machine learning to estimate the position where the neutrino interactions happen (VertexCVN)


• Developed to address several known failure modes of NOvA’s existing algorithm “Elastic Arms”


- Forward failure - tendency for main prong to be split into two


- Backward failure - tendency for multiple, small prongs to be combined into one

True Vertex

VertexCVN Elastic Arms
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VertexCVN
• Better vertex finding, means better on


- Clustering hits to form individual particle tracks/
showers


- Identifying particle types


- Energy estimation


• Same network architecture as EventCVN (modified 
MobileNetv2, arXiv:1801.04381) was explored to 
predict one 3D vertex


• Trained with both beam modes combined, but 
separately for Near (~18 million events) and Far 
(~25 million events) detectors 


• VertexCVN is more precise than Elastic Arms, but 
slightly less accurate

13 cm ~ 2 planes

Reco - True (cm)
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CC 
CC 

NC

νe
νμ
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VertexCVN
• Relative performance has been studied for different types of neutrino interaction:


- Better performance on 𝞶e CC, less on NC


• VertexCVN performance is largely insensitive to the true position of the vertex

13 cm ~ 2 planes

Mean Distance (cm) by True Location

True Z (cm)Reco - True (cm)
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Summary
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• NOvA pioneered the use of CNNs for event classification in HEP and implemented improved 
networks for recent analyses


• In NOvA, machine learning has been developed to:


- Identify events and final state particles 


- Reconstruct neutrino energy, final state particle energy, vertex


- Perform full event reconstruction


• Other ongoing ML efforts in NOvA: Improve ProngCVN with both neutrino and antineutrino 
sample, Graphical Neural Networks, Unsupervised training


• NOvA has been performing expansive data comparison, impact analysis, uncertainty studies 
and cross-checks to improve robustness and interpretability of ML techniques

Thanks



Backup
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Raw Far Detector readout in a 550 μs window


On surface sees ~130 kHz cosmic rate
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Sliced to the 10 μs beam spill window

3 m

14 m
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CNN-based Event Classifier (EventCVN)
• CVN: a convolutional neural network, based on modern image recognition technology, identifies neutrino 

interactions directly from pixel maps


• NOvA is the first HEP experiment to apply CNNs to publish physics results:  
Phys.Rev.Lett. 118 (2017) 

• Increased in sensitivity to neutrino oscillation parameters over traditional methods equivalent to 
collecting 30% more exposure

CNN architecture

2016: GoogleNet

Now: Modified MobileNetv2

Select νμ (ν̄μ) CC and νe (ν̄e) CC candidates 
from neutrino (anti-neutrino) beam with CVN

CVN output in the far detector MC
JINST 11, P09001 (2016)
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CNN-based Event Classifier (EventCVN)
neutrino mode anti-neutrino mode

• Similar performance for 
neutrino and anti-
neutrino modes


• Anti-neutrino mode 
shows slight increase in 
efficiency 

• Purity over 90% for all 
interaction flavors
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CNN-based Particle Classifier (ProngCVN)

• Single particles are separated using 
geometric reconstruction methods


• Classify particles using both views of the 
particle and both views of the entire event 

• This shows the network contextual 
information about single particles

Phys.Rev.D 100 (2019) 7, 073005
CNN architecture:

Modified MobileNetv2

Four-tower Siamese structure
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CNN-based Particle Classifier (ProngCVN)

• Improvements were found in both efficiency and purity for all particle types, 
compared to the particle-only network


• In particular ~10% increase in the efficiency of selecting photons and pions
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Regression CNNs for Energy Estimation
• The CNN architecture used is an adapted ResNet


• Weighting scheme so the loss function sees a flat 
energy distribution, to control energy dependence


• Use mean absolute percentage error instead of 
square of errors to decrease the effects of outliers

PhysRevD.99.012011

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.012011


Wenjie Wu (UC Irvine) Machine Learning in NOvA21

Regression CNNs for Energy Estimation
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• Regression CNN shows a better resolution compared 
with kinematics-based energy reconstruction


• Shows smaller systematic uncertainties due to 
neutrino interaction simulation


• Good stability over interaction types

Also trained for electron energy, hadronic energy, νμ energy, etc



Wenjie Wu (UC Irvine) Machine Learning in NOvA22

LSTM for Energy Estimation
• Long Short-Term Memory (LSTM) is a type of recurrent neural network


• Takes a number of traditional reconstruction quantities as inputs


• Trained with artificially engineered sample to increase network resilience


• Resolution comparable with regression CNN
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Full Event Reconstruction with Image Segmentation
• Full event reconstruction on a hit-by-hit basis using instance 

segmentation:


- Bounds: Create a bounding box around each particle with a 
Region-based CNN (RCNN)


- ID Score: Use a softmax function to classify the particle 
contained within each box


- Clusters: Group together hits, identify hits, then individual hits 
are combined to form clusters


• Very powerful in PID and clustering efficiency


• No dependence on other reconstruction (vertex, etc)


• However, it’s quite slow to run on CPUs, and more work needs to 
be done to run at scale
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Cosmic filtering with a NN
• Network based on ResNet18 backbone with a 

siamese structure 


- Takes in two event images (top-view and side-
view) as input


• Softmax output with five labels: νμ, νe, ντ, NC, 
and cosmic score


• Training sample contained 1M+ νμ, νe, and NC 
events in both beam modes and 5M+ cosmic 
events


- Not trained separately for neutrino/
antineutrino mode


• Performs better than traditional cosmic rejection 
in all samples
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Single particle ID

• NOvA also has trained a 
network using singularly 
simulated particles for ND 
analyses → no contextual 
information


• Also developing a network 
designed for neutron 
identification using these 
samples
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Improved ProngCVN

• Modifies ProngCVN 
(modified MobileNetv2) 
architecture by adding 
Squeeze-Excite block for 
channel attention


• Trained on a combined 
sample of neutrino and 
antineutrino mode


• Shows good performance 
for particle classification

Akshay Chatla, DAE 2022
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Event Topology
Pixel size: ~ 4 cm x 6 cm

Diffuse activity from  
nuclear recoil system

NC (background)

Short, wider,  
fuzzy shower

 CC (  appearance signal)νe νe

Long, straight track

 CC (  disappearance signal)νμ νμ

J. Inst. 11, P09001 (2016)


