

# The photo-detection system and double calorimetry in DUNE Giulia Brunetti for the DUNE Collaboration



## **Deep Underground Neutrino Experiment – Liquid Argon TPC Technology**



Two observables generated from energy deposition by particles in liquid Argon:

• CHARGE  $\rightarrow$  Ionization electrons, drift to the anode: precise imaging • LIGHT  $\rightarrow$  VUV scintillation photons ( $\lambda$ =128nm): precise event timing

 $\rightarrow$  Two independent readout systems:

Anodic charge readout &

**Photo Detection System (PDS)** 



DUNE Far Detectors (17kton modules) FD1 - Horizontal Drift FD2 - Vertical Drift

doping

(FD-HD)

(FD-VD) • Drift Length doubled  $\rightarrow \sim 6 \text{m w}/\text{ cathode in the middle}$ 

second oscillation maxima: coordinated analysis of the reconstructed  $v_{\mu}$ ,  $v_{e}$  and anti- $v_{\mu}$ ,  $v_{e}$  energy spectra in Near and **Far Detectors** 

Improving the energy resolution directly impacts **DUNE sensitivity to CPV and Mass Ordering** 



- Wire readout planes • 4 drift regions
- cold electronics and PCB readouts (no wires)
  - PDS: • X-ARAPUCA in the Cathode (300 kV!) and outside the field cage Light Uniformity and Light Yield improved with Xenon



## The Photo-detection System LAr VUV Light detection

Scintillation light is:

•

- Abudant: 25k photons/MeV @ 500V/cm  $\rightarrow$ combined with charge signal **improves** calorimetry
- **Fast:** fast component  $\tau$ =7 ns  $\rightarrow$  provides event t<sub>0</sub>, crucial for triggering non-beam events

**Detection of Light in a DUNE TPC:** 

- VUV photons converted to longer wavelength (WLS)
- Visible light is trapped inside a module, a fraction is conveyed to Silicon Photomultipliers (SiPM)

X-Arapuca

Reflective box equipped with an entrance window, two photon downshifting stages, one dichroic filter and one light guide coupled to SiPM



Trap photons in a box with highly reflective internal surfaces

- Core of the device: **Dichroic filter**
- = multilayer interference film which is highly transparent for wavelength below a cutoff and highly reflective above it
- Ligth transmitted: PTP shifter deposited on the dichroic external side converts VUV light to a wavelenght < dichroic cutoff
- Light Trapped: internal WLS bar

#### **Vertical Drift - PDS**

• **PoF (Power over Fibers):** A new technology to overcome the challenge of powering and reading SiPMs in a 300kV electric field



#### • Xenon Doping: 178 nm wavelength photons



at cold

 LAr transparent to its own light, but VUV  $\gamma$  scatter Rayleigh on Ar Larger Rayleigh scattering length for 178 nm photons (~9m vs 1m for 128 nm photons)  $\rightarrow$  better light uniformity & LY



recombination e

converts the primary shifted photons to a wavelenght > dichroic cutoff • After reflections the photons can be detected by SiPM positioned laterally with respect to the WLS plane

## Double Calorimetry: Charge+Light

• Charge only - standard reconstruction of deposited energy in a LArTPC: only the electrons that escape e<sup>-</sup>-ion recombination and successfully drift to the anode can be used: a <u>correction must be applied to account for the charge lost</u>



**R=Recombination Factor** = electron recombination survival probability. <u>Depends on the E<sub>field</sub> and local ionization charge density  $dQ/dx \rightarrow difficult$  to determine at all</u> deposition sites, particularly for EM showers  $\rightarrow$  use of an average value **W**<sub>ion</sub>=ionization work function

• Adding the light: charge and light are anticorrelated and their sum is directly proportional to the deposited energy:

$$E_{QL} = Wph \left(Q + L\right)$$

 $W_{ph}$ =19.5 eV = average amount of energy deposited by a charged particle to produce an ion or exciton. Related to  $W_{ion}$  through the excitation ratio  $\alpha$ :  $W_{ion} = 23.6 \text{eV} = (1-\alpha)^* W_{ph}$ 

<u>Charge</u>:  $\mathbf{Q} = \mathbf{N}_{i} \mathbf{R} = \mathbf{N}_{e}$ <u>Light:</u>  $\mathbf{L} = \mathbf{N}_{ex} + \mathbf{N}_{i} (1-\mathbf{R}) = \mathbf{N}_{v}$ 

We can perform a calorimetric measurement by-passing the correction for recombination that is no longer

### **Energy Resolution**

- Preliminary studies with beam neutrinos simulated events in the DUNE FDs • Starting from  $\begin{cases} all collection plane charge hits of the event <math>\rightarrow Calculation of all PE reconstructed \\ O & I \end{cases}$ Q & L
- Reconstructed event Energy from Charge & Light:  $E_{QL} = W_{ph} (Q+L) \rightarrow$ **Comparison to Total Deposited Energy**







#### necessary and improve energy resolution

#### **Light Simulation**

- 1) Production: phenomenological model (modification of the Birks' charge recombination model) that provides the anticorrelation between light and charge and its dependence with dE/dx and  $E_{field}$ :  $Q(dE/dx, E_{field}) + L(dE/dx, E_{field}) = N_i + N_{ex}$
- $N_i$ ,  $N_{ex}$  = model input parameters, with current numerical values extracted from data (2022 JINST 17 C07009)
- 2) Propagation: Semi-analytical model that predicts hits on a PDS module from scintillation photons produced: factorize geometry ( $\Omega$ ) absorption and Reyleigh scattering (Eur. Phys. J. C 81, 349 (2021))
- 3) Digitization:
  - For each p.e., a waveform is created
  - Waveforms filtered to deconvolve detector response and scintillation time profile

Visibility Map from semi-analitycal model corresponding to a fraction of FD1 Visibility at different Y





• Preliminary results on simulated beam events  $\sigma_{\rm F}$  CC contained on Total Deposited Energy: FD-HD: 6.6%  $v_e$ , 8.2%  $v_u$  and 8.5%  $\overline{v}_u$ 

Charge-only energy resolution in DUNE in [0.5-4] GeV range: ~15–20%, depending on lepton flavor and reconstruction method (Eur. Phys. J. C 80, 978 (2020))

 $\rightarrow$  may improve DUNE sensitivity of CPV and Mass Ordering!

Next: Double calorimetry for Vertical Drift  $\rightarrow$  Longer drift + Xe doping: 0 Enhanced light collection!



### giulia.brunetti@unimib.it

