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Motivations: Flux and energy anomaly

• Probe the Reactor Antineutrino Anomaly 
with a different technology, different reactor

• A deficit in the measured flux compared to 
predictions.

• Could be explained by a new oscillation into 
a sterile neutrino.

• Gallium anomaly: Phys. Rev. C 56, 3391 
(1997)

• Measure precisely the U-235 Reactor 
antineutrino spectrum 

• Unexpected distortion at 5 MeV reported by 
antineutrino experiments at power (LEU) 
reactors (235-U, 239-Pu, 238-U, 241-U 
isotopes) 235-U is thought as an interesting 
candidate to look for explanations.

•  Recent indiction from short-baseline liquid 
scintillator experiments at 235-U research 
(HEU) reactors [arXiv:2107.03371]

Nature Phys. 16, 558 (2020)
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The SoLid experiment is designed to study very short baseline anti-neutrino oscillations

SoLid aims to address these anomalies using a novel detection technology w.r.t. the based Liquid 
experiments and using an other research reactor



Experimental Location

➡  Important cosmic induced background 
➡  Key challenge that guided SoLid’s design
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  ● Inverse beta decay (IBD) interaction of electron antineutrinos
detected using combination of two scintillators

  ● Basic detection cell comprises 5 cm PVT cube covered with two
LiF:ZnS(Ag) screens, wrapped in reflective Tyvek, and crossed by four wavelength-shifting fibres for photon collection

 PVT cube for prompt signal: ES (electromagnetic scintillation)
  ● Energy deposit by positron carrying the antineutrino energy
  ● Two annihilation gammas (511 keV) are emitted

 6LiF:ZnS(Ag) sheets for delayed signal: NS (nuclear scintillation)
  ● Sheets cover two faces of each cube
  ● A thermal neutron is captured ~64 μs after the prompt signal

 Use the temporal and spatial coincidence between two types of
 waveforms to tag IBD interactions

 ES  NS  4

Antineutrino detection principle

thanks to the high segmentation, we can exploit the detailed topology of the prompt signals 



SoLid Technology, a different approach 

Motivations
• Plastic scintillator (ELJEN EJ-200) provides 

alternative technology for antineutrino 
measurement
• Very good linearity of response

• Highly segmented technology:
• Isolate positron energy and 

identification of annihilation gammas
• Event topologies allow classification of 

signal and background

Challenges
• Reduction of high backgrounds
• No direct gamma-neutron PS
• Heterogenous detector
• Need detailed understanding of 

complex detector
• Large number of readout channels 

and parameters to calibrate
Top: Response of the PVT scintillator as a function of energy in the 1–11 MeV range 
from September 2018 calibra- tion data. The linear fit is derived from the points indicated 
in red and further validated by the blue points, which align well with the fit. Bottom: 
Data-MC comparisons of BiPo and boron-12 spectra. 
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 12800 PVT cubes (1.6 ton fiducial volume)
  ● 256 cubes per plane
  ● 10 planes per module
  ● 5 modules for oscillation study

 3200 readout channels
  ● Signals detected by S12 series MPPCs (SiPM)

 Detector modules mounted on rail system allowing
 for in-situ calibration with sources 6

Phase I Detector 



Phase I Detector and Dataset

Data on tape
• Two years of data (April 2018 - July 2020)
• 13 reactor cycles during this time.

• Selected respectively ~280 days and 
~170 days of sufficiently high quality 
reactor-on (ron) and reactor-off (roff) 
data for an oscillation
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Very stable over time



Major issue: Controlling two backgroundsMajor issue: Controlling two backgrounds

Fast neutrons induced by cosmic-ray shower 
& muon spallation: 
• Neutron recoil events: ES
•Neutron capture: NS

BiPo (internal):
• Unexpected and critical internal 

contamination of  ZnS layer
• Nearly 2 order of magnitude above 

IBDs before selection
• Derived from 238U/230Th series

•  214Bi decay (e-, γ): ES
•  214Po decay (α): NS
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• However, SoLid technology offers many dimensions to test the signal and 
background

• Technology very well suited for the use of machine learning techniques



Event Display
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Very clear topological signature



High Background level
ROff Composition Before Selection
 

Open dataset ROff
➢Accidentals: 32%
➢BiPo: 58%
➢Fast neutrons: 10%

We obtain an initial signal-to-background
ratio of ~ 0.00133.

Evaluate the relative proportions of 
different backgrounds using ∆t fit:
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Open dataset ROff
➢ Accidentals: 2%
➢ BiPo: 18%
➢ Fast neutrons: 80%

Signal-to-background ratio improved by an
order of magnitude to ~ 0.0273

Evaluate the relative proportions of 
different backgrounds using ∆t fit:

the detector granularity is exploited to isolate the positron 
energy, which carries the antineutrino spectrum information



High Background level
ROff Composition Before Selection
 

Open dataset ROff
➢Accidentals: 32%
➢BiPo: 58%
➢Fast neutrons: 10%

We obtain an initial signal-to-background
ratio of ~ 0.00133.
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the detector granularity is exploited to isolate the positron 
energy, which carries the antineutrino spectrum information

Open dataset ROff
➢ Accidentals: 2%
➢ BiPo: 18%
➢ Fast neutrons: 80%

Signal-to-background ratio improved by an
order of magnitude to ~ 0.0273

➡ Need ML classification techniques based on the unique technology features

Evaluate the relative proportions of 
different backgrounds using ∆t fit:

Standard cuts-based selection



 SoLid
 preliminary
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Well understand the detector: calibration
Absolute calibration
  ● Energy scale measured across entire spectrum:

○ Na22 (Compton edge KS test)
○ AmBe (e+e- at ~ 3.4 MeV)
○ Muons (~ 10 MeV)

  ● Light yield of 94 PA/MeV (16% resolution at 1 MeV)
  ● Very good linearity of response

ofileData.root

Entries  21121

Mean    6.821

Std Dev     3.275

0 5 10 15 20 25
Amplitude [PA]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ofileData.root

Entries  21121

Mean    6.821

Std Dev     3.275

ofileData.root

ofileData.root
Entries  117
Mean    15.39
Std Dev     7.008

0 5 10 15 20 25
Amplitude [PA]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

D
at

a/
M

C ofileData.root
Entries  117
Mean    15.39
Std Dev     7.008

ofileData.root

ofileData.root

Entries  21121

Mean    27.82

Std Dev     7.678

10 15 20 25 30 35 40 45 50 55
Amplitude [PA]

0

0.01

0.02

0.03

0.04

0.05

ofileData.root

Entries  21121

Mean    27.82

Std Dev     7.678

ofileData.root

ofileData.root
Entries  29
Mean    54.07
Std Dev     22.71

0 20 40 60 80 100 120
Amplitude [PA]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 ofileData.root
Entries  29
Mean    54.07
Std Dev     22.71

ofileData.root

Na22 0.511 MeV 
Cube level

Data 
MC

Na22 0.511 MeV 
Fibre levelPrecise MC tuning!
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 Relative calibration
  ● Cosmic muons used to equalise the response of

cubes and channels
○ More practical than using sources, and can

monitor the energy scale over time

○ Characterise light leakage between cubes
  ● Informs the detector response in simulations



 BiPo for Detector Response Model
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The topological variables have been validated with BiPo data/MC. 

Preliminary

Preliminary

Preliminary

Preliminary

Preliminary

Data/MC BiPo cube in gamma 1

Data/MC BiPo cube in gamma 2

Data/MC BiPo energy of gamma 1

Data/MC BiPo energy of gamma 2

Data/MC BiPo dot product gamma 1-2

Dot product 

Energy [MeV]

Energy [MeV]#Cube

#Cube

Very good agreement: critical to trust our analyses.
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PSD capabilities with LiF:ZnS(Ag) : BiPonator 

• Shape of alpha waveforms are different 
from Lithium-6 neutron capture !

CNN

• Convolutional Neural Network classifier 
on raw waveforms

• Most powerful cut to reduce BiPo 
background (95% reduction) : big 
improvement over previous method based 
on charge integration

• For 80% neutron efficiency

✓Signal-to-background ratio of 1/50 (as seen previously)



16

IBD Analysis  

Separation between signal (IBD MC) and background 
(reactor-off) events achieved by the BDT and CNN 
models, expressed as the product of their two output 
scores

• Designed to discriminate between the ES 
clusters of IBD events and fast neutrons

• Boosted Decision Tree (BDT) classifier trained 
on simulated IBD events (signal) and reactor-off 
data (background) using twenty input features.

• A significant portion of these variables are 
topological variables, which fully exploit the 
innovative features of the detector (originally 
designed to detect positrons).

• Blind analysis (one open roff-cycle dataset)

• Flat efficiency selection for signal in oscillation 
variables 

Boosted Decision Tree Analysis 
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Background subtraction and signal extraction 

Linear pressure fit

  ● Stable signal subtraction, dominated by atmospheric 
neutrons

 ○ Excess consistent with zero for reactor-off data

  ● Fast neutron background rate pressure-corrected using 
multiple local models over Phase-I

• Analysis on the open dataset with the BDT selection gives :

✓ IBD-like excess of 120 events per day

✓ Signal-to-background ratio of 0.30

• Relatively good agreement with IBD MC obtained with this data sample (1D projections on the right, 
actual subtraction performed with 2D histogram)



18 Frequentist exclusion and sensitivity contours (Feldman-Cousins) and Bayesian 
MCMC credible region.

Oscillation Fit

• Shape-only chi-square comparison of each 
pair of ROn cycles (background subtracted 
from each one independently)

 

• Detector response modelled with migration 

matrix

• Data-MC Control Plots : very good agreement

•  Standard frequentist approach based on 

Feldman-Cousins toy generation 

•  Bayesian based on a Markov chain Monte 

Carlo (MCMC) provides cross-check of the 

frequentist result: good agreement

• Systematics well understood, largest 
one from the light yield uncertainty



 SoLi ∂ 
•  SoLid has operated successfully at the BR2 research reactor between
 spring 2018 and spring 2022

•  SoLid has ~ four years of data on tape : Phase-I and a Phase-II 
dataset using new SiPMs with 40% more light

•  Antineutrino analysis based on this novel detector technology 
requires careful use of IBD signal topology and ML methods to 
obtain competitive S:B figure

•  Demonstrated extraction of antineutrino signal with high 
significance in high background environment

• Alternative technology for antineutrino measurement with an 
exclusion of a part of the space phase complementary to Liquid based 
experiments 

•Publication has been submitted to arXiv yesterday, 
release will be on Monday! 

Summary 



Thank you!

 SoLi ∂



Backup
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 SoLi ∂ SoLid Phase-II (2020-22)

 31



 SoLi ∂ Summary
 ·  SoLid has operated successfully at the BR2 research reactor between

 spring 2018 and spring 2022
 ·  SoLid has ~ four years of data on tape : Phase-I and a Phase-II dataset

 using new SiPMs with 40% more light
 ·  Antineutrino analysis based on this novel detector technology requires

 careful use of IBD signal topology and MVA/ML methods to obtain
 competitive S:B figure

 ·  Demonstrated extraction of antineutrino signal with high significance and
 new directionality measurement capability

 ·  Mature antineutrinos analyses allows now for precise oscillation and
 antineutrino spectrum measurements



 Reconstruction &
 calibration



 SoLi ∂ Event reconstruction
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 SoLi ∂ Reconstruction and allocation of energy deposits

 ·  SoLid detector projects 3D information of energy
 deposit in more than one cube onto 4x 2D
 planes

 ·  Reconstruction requires to reallocate properly
 the energy to the right cube

 SS i P M = A Ed e p

 ·  Uses ML-EM based algorithm
 ·  A is the system matrix (SM) and can

 encode channel to channel differences

 Hervé Chanal et al., Reconstruction of Inverse Betay Decay events in the SoLid experiment using the ML-EM algorithm, IEEE NSS 2021

 NEW
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 SoLi ∂  Event topology classification

 ·  Segmentation of the detector volume enables a
 more detailed categorisation of event topologies

 ·  High level quantities are constructed based on
 prior physics knowledge of the IBD kinematics

 ·  Main positron dEdx cube (AC)

 ·  Extension of cube activity from annihilation
 gamma deposits

 ·  Inputs for the MVA analysis

 14



 SoLi ∂ ES energy estimation  NEW

 ·  Several energy estimators were studied to find the
  one closest to the positron energy

 ·  Separation of gamma “cloud” from positron
  energy reduces dependence on small energy
  deposits in energy estimator

 NEW
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 SoLi ∂  CROSS calibration robot
 ·  Automated X-Y source scan of 6 gaps within detector

 ·  Measure absolute efficiency and energy scale
 calibration at % level

 ·  Gamma-ray: 207 Bi, 60 Co, 22 Na

 ·  Neutrons: AmBe, 252 Cf

 16



 NEW
 ES Energy Estimator
  ● Comprehensive study to find optimal positron
 energy estimator

  ● “MAGE” variable retains nearly 97% of the
 deposited positron energy whilst excluding 86%
 of the deposited annihilation gamma energy

 ○ The latter is crucial for event classification
 and background discrimination



 SoLid preliminary

 ·  Energy scale measurement using :

  ·  Na-22 source (MC-data KS test)

  ·  AmBe e+e- at ~3.4 MeV

 ·  Light yield (LY) ~ 96 PA/MeV
 ·  Stochastic term  σE = 15 %  at 1 MeV (Phase-I) SoLid preliminary

 ·  Excellent linearity of detector response

  ·  Crosschecked also with B-12 dataset

 18

Energy scale calibration 



 Signal Extraction
 Rate analysis on (first) half of Phase-I
  ● Stable signal subtraction, dominated by atmospheric neutrons

 ○ Excess consistent with zero for reactor-off data

  ● Fast neutron background rate pressure-corrected using multiple local
 models over Phase-I

 14
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Response Matrix

➢ Recently switched from SoLO (C++) to PySoLO (Python3) for the oscillation analysis due to an 
unidentified bug in the former.

➢ As such, response matrices are now generated using the ReMU package (doi:10.5281/zenodo.1217572) rather 
than RooUnfold, amongst other things.

○ Performance is unchanged, very good agreement between full simulation and response matrix
○ Matrix “trained” with ~3M true-space events and corresponding reco-space events (10% overall 

efficiency)
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Subtraction: 
• We first subtract BiPo and accidental. 
• Study fast neutrons rate in data to model their dependence on 

pressure. 

•  

•  
• This approach is cross-checked by taking days with same pressure.

SSignal−BiPo, j − S̄Signal−BiPo = χRef
atm ⋅ (Pj − P̄)

SSignal−BiPo−Atm,k = SSignal−BiPo,k − χRef
atm ⋅ (Pk − P̄)

Two backgrounds with a different day to day evolution: 
• Reactor OFF data 

• The BiPo may change because of radon release. 
• Fast-neutrons are correlated with pressure variation.
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Excess in data vs MC

Daily rate of , atmospheric model and ExcessSSignal−BiPo
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Annihilation gamma efficiency

Na22 source

Half-module 
Plane 35->39

Half-Module 
Plane 40->44

Selection: 
• 22Na source emits: 

• 1 gamma of 1.274 MeV 
• 2 gamma of 0.511 MeV from positron annihilation 

• Tag the 1.274 MeV interaction in one module 
• A cube above 60PAs ~ 650 keV 

• Look at the other module to find annihilation gamma 
• Consider a cube if: 

• Isolated in the plane 
• The four fibres above 2.5 PAs

Normalisation: 
• Distributions from annihilation gammas are 

normalised using the number of tags.

Energy spectrum: 
• We observe a discrepancy between data and MC 

efficiency to see annihilation. 
• MC sees 20% more annihilation gamma than data. 
• Meaning a fibre efficiency control @ 5% 

• The shape is well reproduce by the MC.
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Category shifting as function of fibre threshold

Gamma 0 1 2

IBD MC 34 % 41 % 24 %

Reactor off 53 % 26 % 20 %

High threshold

Gamma 0 1 2

IBD MC 16 % 36 % 47 %

Reactor off 30 % 27 % 44 %

Low threshold

• Lowering the fibre analysis threshold from 200 
keV (High threshold) to 100 keV (Low threshold) 
allows to double the cleanest category. 

• The 2-gamma category will be populated by 
increasing the light yield. 

• Category for which the discrimination is the best!
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