

42nd International Conference on High Energy Physics Prague, Czech Republic

First measurement of light sterile neutrino mixing parameters with KM3NeT/ORCA

20/07/2024 Louis Bailly-Salins on behalf of the KM3NeT Collaboration

KM3NeT

Neutrino telescopes at the bottom of the Mediterranean sea

Oscillations Astronomy ORCA ARCA

Sensitive to Cherenkov light induced by charged particles

Light sterile neutrinos

Simple extension of SM: 3+1 sterile New parameters: Δm_{41}^2 , θ_{14} , θ_{24} , θ_{34} , δ_{14} , δ_{24}

100.0

10.0

1.0

0.1

 $\Delta m^2_{41} \ [eV^2]$

Sensitivity (99% CL):

1.2 σ

— Median

0.01

KM3NeT results at **fixed** $\Delta m_{41}^2 = 1 \text{ eV}^2$ in this talk Simultaneous measurement of $|U_{\mu4}|^2$ and $|U_{\tau4}|^2$ $(|U_{\mu4}|^2 = \cos^2 \theta_{14} \sin^2 \theta_{24}; |U_{\tau4}|^2 = \cos^2 \theta_{14} \cos^2 \theta_{24} \sin^2 \theta_{34})$

4

[arXiv:2405.08070]

Result:

★ Best Fit
90% CL
95% CL

— 99% CL

1.0

0.1

 $\sin^2(2\theta_{24})$

Sterile neutrino with $\Delta m_{41}^2 \sim 1 \text{ eV}^2$ in KM3NeT/ORCA

Sterile: additional matter effects due to **neutron density** N_n \rightarrow MSW resonances on (anti) v_μ disappearance >1 TeV hard to see with ORCA

Signal expected to affect $1^{st} v_{\mu}$ disappearance max ~25 GeV: $-\theta_{24}, \theta_{34}$: change amplitude - when both \neq 0: shift position depending on δ_{24} value

KM3NeT/ORCA6 dataset

Analysis performed with data from 6-DU configuration (ORCA6) Exposure = instrumented volume of working PMTs × livetime => 433 kton-yr

KM3NeT/ORCA6 event selection

Use BDTs to summarize reconstructed quantities into **atmospheric muon score** (for background rejection) and **track score** (to distinguish track/shower)

Excellent data/MC agreement

Define three classes: High-purity tracks, Low-purity tracks, Showers

Oscillation analysis in KM3NeT/ORCA

5828 events in total

Compare measured $n_{i,j}$ and predicted $\mu_{i,j}$ 2D reconstructed (E, cos θ) event distribution for each class i

+ 15 nuisance parameters to model uncertainties on flux, oscillation parameters, cross sections and detector effects

Showers

[GeV]

Energy

Reconstructed H

68% Quantiles

68% Quantiles

68% Quantiles

Low purity tracks

High purity tracks

 10^{1}

True Energy [GeV]

KM3NeT/ORCA Preliminary, 715 kt-v

KM3NeT/ORCA6 Preliminary, 433 kton-years

Rev. Mod. Phys. 84, 1307

J. Phys. G: Nucl. Part. Phys. 43 084001

 E_{ν} (GeV)

8 10

6

 $\sin^2 \theta_{24} = \sin^2 \theta_{34} = 0.05, \, \delta_{24} = \pi/2$

 10^{2}

 E_{ν} [GeV]

20

103

11

30 40 1.0

0.8

د د 3.0

 $P_{(\nu_{\mu})}^{*}$

0.2

104

Effective Mass [Mton]

10

Instrumented Mas

3 4 5 6 7 8 9 1 0

 Δm_{ii}

 $heta_{ij}$

 δ_{ij}

 $(m^{-2} sec^{-1} sr^{-1} GeV^2)$

 $\phi_\nu E^3$

400

300

200

0.0

-0.2

-0.4

-0.6

-0.8

-1.0100

HKKM15

Bartol

Fluka

101

 $\cos(\theta)$

Results:
$$U_{\mu4}$$
 and $U_{\tau4}$ fit

Frequentist analysis : scan ($|U_{u4}|^2$, $|U_{\tau4}|^2$)

$$\Delta m_{41}^2 = 1 \text{ eV}^2$$
; $\theta_{14} = \delta_{14} = 0$; δ_{24} free

Assume $\Delta \ln \mathcal{L} \sim \chi^2$ distribution with 2 d.o.f (Wilk's theorem)

Best fit:
$$|U_{\mu4}|^2 = 6.89 \times 10^{-2}$$

 $|U_{\tau4}|^2 = 2.35 \times 10^{-4}$

Results: $U_{\mu4}$ and $U_{\tau4}$ fit vs the world

Already competitive limits with only 6 DUs and 1.4 yrs livetime (equivalent to 1 month of ORCA115)!

(SK: 12.2 yrs; ANTARES: 7.8 yrs;

IceCube: 10.7 yrs; DeepCore 7.5 yrs)

DeepCore: [arXiv:2407.01314] IceCube: [arXiv:2406.00905] ANTARES: J. HEP 2019, 113 SK: Phys. Rev. D 91, 052019

Results: $U_{\mu4}$ and $U_{\tau4}$ fit vs expected (sensitivity)

Much lower limits than expected from sensitivity, especially on U_{τ_4}

Results: $U_{\mu4}$ and $U_{\tau4}$ fit vs expected

Much lower limits than expected from sensitivity, especially on U_{T_4}

→ Track classes data at first v_{μ} disappearance lower than model can get: excludes high $U_{\mu4}$ and $U_{\tau4}$ values

→ Consistent with standard oscillation analysis (narrower θ_{23} profile than expected)

Summary

Oscillation analysis with eV-scale sterile neutrino Only 5% of the final detector Already competitive limits on $|U_{u4}|^2$ and $|U_{\tau4}|^2$

Several improvements in the near future: • Δm_{41}^2 dependent measurements of θ_{24} and θ_{34}

- Bigger detector, exposure ×4
- Bayesian parameter estimations

Sterile neutrino with $\Delta m_{41}^2 \sim 1 \text{ eV}^2$ in KM3NeT/ORCA

When both θ_{24} , $\theta_{34} \neq 0$, **1**st **v**_µ **disappearance max** ~25 GeV shift position depending on δ_{24} value

KM3NeT/ORCA6 effective mass

Oscillation analysis in KM3NeT/ORCA

Compare this measured $n_{i,j}$ with predicted $\mu_{i,j}(x, \eta)$ 2D reconstructed ($E, \cos \theta$) event distribution for each class *i*

Determine parameters of interest x through Maximum Likelihood Estimator (binned Poisson + Gaussian penalty for constrained nuisance parameters η ')

$$l(\boldsymbol{x},\boldsymbol{\eta}) = 2\sum_{i=1}^{N_{classes}} \sum_{j=1}^{N_{bins}} \left[\mu_{i,j}(\boldsymbol{x},\boldsymbol{\eta}) - n_{i,j} + n_{i,j} \ln\left(\frac{n_{i,j}}{\mu_{i,j}(\boldsymbol{x},\boldsymbol{\eta})}\right) \right] + \sum_{k=1}^{N_{priors}} \left(\frac{\eta_k' - \langle \eta_k' \rangle}{\sigma_k}\right)^2$$

Nuisance parameters

All nuisance parameters are fitted Some are constrained (Gaussian prior), others are *unconstrained*

L/E neutrino distribution @ best fit

Log-likelihood ratio map @ best fit

KM3NeT/ORCA6 Work in progress, 433 kt-y

Effect of systematics @ best fit

Black points: parameter value at BF normalized by std. dev. (from prior if constrained, from fit otherwise) Blue bars: shifts in parameters of interest from fixing the nuisance parameters to their best fit value $\pm 1 \sigma$

Standard oscillations: θ_{23} **profile**

Observed θ_{23} profile lies on expected ~95% C.L. limit on most of the phase space

$\Delta m_{_{41}}^2$ -dependent sensitivities to $\theta_{_{24}} \& \theta_{_{34}}$

