

MicroBooNE Low-Energy-Excess Search - Photon Analyses

Xiao Luo, University of California Santa Barbara on behalf of MicroBooNE collaboration

MiniBooNE's Low-Energy-Excess (LEE) anomaly

MiniBooNE

- Oil Cherenkov detector
- Located on-axis of Fermilab Booster Neutrino beam (BNB)
- with L/E ~1 m/MeV

MiniBooNE's Low-Energy-Excess (LEE) anomaly

MiniBooNE

- Oil Cherenkov detector
- Located on-axis of Fermilab Booster Neutrino beam (BNB)

•

• with L/E ~1 m/MeV

MiniBooNE detector is not able to distinguish e⁻ from γ. Need a different detector technology to understand the origin of this LEE anomaly-> MicroBooNE's primary physics goal

MicroBooNE's LArTPC going after LEE

MicroBooNE

- Liquid Ar Time Projection Chamber (LArTPC)
- Located right upstream of MiniBooNE, same beamline -> same L/E as MiniBooNE

MicroBooNE's LArTPC going after LEE

Two handles for e^{-}/γ separtion

- Gap between shower start and vertex
- 2MIP Vs 1 MIP for shower dE/dx

MicroBooNE

- Liquid Ar Time Projection Chamber (LArTPC)
- Located right upstream of MiniBooNE, same beamline -> same L/E as MiniBooNE

MicroBooNE's signature LEE analyses search for excess events in electron and photon channel

1st round of Electron LEE search result

ve e-shower ve e-shower

Observed v_e rates are **consistent** with the predicted background in the low energy region:

- Slight data deficit overall
- 1e0p background dominated

Result

 v_e alone to explain MiniBooNE-LEE is rejected at 97% C.L.;

(>3 σ in the inclusive channel)

No significant excess in the v_e channel!

New eLEE result with **full dataset** presented by <u>Miquel Nebot-Guinot</u> on Thursday

1st round of photon LEE search: $NC \Delta \rightarrow N\gamma$

 $\mathsf{NC} \Delta \rightarrow N \gamma$

A flat ~3X enhancement of the SM rate would match the MiniBooNE LEE

Result

- Observed **no data excess** in both NC $\Delta \rightarrow N\gamma$ signal channels
- Reject $3x \text{ NC} \Delta \rightarrow N\gamma$ rate at 95% C.L.

Summary of 1st round of MicroBooNE LEE results:

No excess:

- in the electron channel
- only investigated in the NC $\Delta \rightarrow N\gamma$ channel

To address if MicroBooNE sees any excess in the **photon** channel

New round of Photon LEE analyses

- Inclusive photon

cast a wide net to search
for anomaly in any process
that produces a single γ, to
definitively answer if
MicroBooNE sees photon
excess

- Exclusive channels
 - Extended NC $\Delta \rightarrow N\gamma$
 - NC Coherent
 - BSM decay to e^+e^- and γ

Inclusive photon LEE – signal definition

Model-independent approach: select an inclusive set of photon events that can enter the MiniBooNE LEE plot. -> Final states: One visible γ -like shower + anything.

Exit detector

Inclusive photon LEE – signal selection

After Cosmic Rejection, S : B ~ 1 : 100 -> BDTs targeted on background rejection

Inclusive photon LEE – signal selection

Last BDT: e/γ separation

Final cut: requiring exactly 1γ reco shower

S: B~1:1

Blind analysis, this only uses ~2% of the full dataset

Sideband constraints

Reco. ν Energy

MicroBooNE Preliminary

NCTO

240001

Leopon

Lenpor ,

Event counts

6000

200

Data/Pred

 $v_{\mu}CC$ Sideband (Left side of $\nu_{\mu}CC$ BDT)

1000

1500

2000 2500 Reco Neutrino Energy [MeV]

ed total uncertaint

500

Example of the correlation matrix between sidebands and signal sample from the new eLEE analysis

Inclusive photon LEE status

Inclusive analysis access a broad range of kinematic phases (e.g. number of protons), crucial to characterize the events in case of an excess

Current status: analysis development completed **Result coming soon!**

Exclusive LEE analyses in γ/e^+e^-

Exclusive LEE analyses in γ/e^+e^-

MICROBOONE-NOTE-1126

MicroBooNE

Preliminary

Pandora $1\gamma 1p$

Pandora $1\gamma 0p$

constr.

constr.

Exclusive LEE analyses in γ/e^+e^-

16

Summary

- MicroBooNE's 1st round LEE result showed no excess in the electron channel -> Need photon LEE search
- Inclusive single photon is designed to answer if MicroBooNE sees an anomaly in any γ channel.
- Several exclusive analyses are also ongoing to search for LEE in the γ/e^+e^- channel
- Stay tuned for new round of MicroBooNE results featuring LEE search in these channels!

Thank you!

Backup

LEE search: e⁺e⁻ from Dark neutrinos

Dark neutrino decays to e+e-

Ballet, Pascoli, Ross-Lonergan PRD 99 (2019) 071701

Bertuzzo, Jana, Machado, Zukanovich Funchal PRL 121 (2018) 24, 241801

Sensitive to MiniBooNE allowed region for these models at > 95% CL More details at: MICROBOONE-NOTE-1124-PUB

MicroBooNE Sensitivities

Exclusive photon LEE analysis: expanding NCA $\rightarrow 1\gamma$

Different event reconstruction:

- Pandora 2D (old)
- Wirecell 3D (new)

Orthogonal selection:

- nearly double statistics.
- Expands $1\gamma 1p$ to $1\gamma Np$

New analysis improves efficiency and purity in $1\gamma 0p$ channel

Target two-dimensional search in Op / Np topologies.

Result coming soon! MicroBooNE Public Note 1104

Exclusive photon LEE analysis: NC Coherent

MicroBooNE Public Note 1103

A very rare SM process 1/40 branching ratio compared to NC $\Delta \rightarrow 1\gamma$ One low energy, forward going (beam direction) photon shower

Event signature:

Use published NC $\Delta 1\gamma$ selection + new tools to reject proton

Status: sideband study and mock-data test.

SM signature beyond sensitivity reach

Probe coherent LEE explanations more generally **Result coming soon...**

Exclusive photon LEE analyses – e⁺e⁻ from BSM

Numerous BSM particles decay to e+e-. The predicted colinear electron pair can look like single photon, entering MiniBooNE's LEE

Inclusive photon LEE selection can be used as the pre-selection for this exclusive final state.

1st round of electron LEE search

Phys. Rev. Lett. 128, 241801 (2022)

Deep Learning Simple topology Simpler E_{ν} reco (CCQE) Lower backgrounds

Pandora Larger signal stat. Less model dependency MiniBooNE topology

Wirecell Inclusive -> sensitive Less model dependency Most useful for DUNE

Search for excess events from intrinsic beam v_e

Three separate analyses focusing on different final state topologies

1e1p candidate

1eNp candidate

1eX candidate

Inclusive photon LEE – event selection

MicroBooNE is a surface detector

First Step: Cosmic Rejection

After cosmic rejection:

S : B ~ 1 : 100

Inclusive photon LEE – event selection

First step is **cosmic rejection**: Innovative use of O(1 ns) timing for cosmic rejection. (First-time application in any MicroBooNE physics analysis!)

Neutrinos "bunches" while cosmic uniform in time Cut on interaction timing to remove cosmic.

MicroBooNE's powerful PID with LArTPC

Inclusive photon LEE – event selection

than electron LEE Other Background BDT Scores v, CC Background BDT Scores MicroBooNE Preliminary 3.423e+19 POT Stat. Uncert. Only MicroBooNE Preliminary 3.423e+19 POT Stat. Uncert. Only Data/D(MC+EXT)=0.93 ΣData/Σ(MC+EXT)=0. 160 BNB Data (2734) beam-off bkg(406.94 peam-off bkg(113.94) IC cosmic bkg(102. BNB Data (616 **BDTS** 140 V bkg(203.33 dirt bkg(23 51) MC cosmic bkg(24 75 out of FV bkg(94.83 CC bkg(1028.33 NC nº bkg(375.19) CC bkg(42.46) .CC bkg(38,16 bkg(223.49) C bkg(30.53) C bkg(15.91) 120 1/(4 46) 1y(29.21 NumuCC 100 remove remaining numuCC non-signal (high energy muon, 0 or >1 γ) events 2.5 a/(MC+EXT) Data/(MC+EXT) 2 MC+EXT Uncertain MC+EXT Uncertainty 1.5 Other canalase en este construction and a series and a series and a series of a series of a series of a series of a s 0.5 remove remaining -8 -6 8 10 smaller/less BDT Score BDT Score problematic v_e CC Background BDT Scores backgrounds NC π^0 Background BDT Scores MicroBooNE Preliminary MicroBooNE Preliminary 3.423e+19 POT Stat. Uncert. Only ΣData/Σ(MC+EXT)=0.91 3.423e+19 POT Stat. Uncert. Only ΣData/Σ(MC+EXT)=0.81 BNB Data (122) beam-off bkg(13.32) BNB Data (253) beam-off bkg(34.03) MC cosmic bkg(4.39) NC Pi0 dirt bkg(5.57) out of FV bkg(23.75 MC cosmic bkg(2.34) dirt bkg(7.4 bkg(14.01) out of EV bkg(39.67 π^0 bkg(36.76) bkg(39.69) $C \pi^0 bkg(140.72)$ NC bkg(3.22) bkg(9.63) remove NC Pi0 bkg(12.08) 1/126 1/2.56 A 1/2.97) <100MeV(2.64) non-signal (2γ) events 10 NueCC remove nueCC 2.5 ta/(MC+EXT) 2.5 2 MC+EXT Uncertainty events Data/(MC+EXT) 2 MC+EXT Uncertaint 1.5 1.5 0.5 0.5 0 BDT Score **BDT Score** 27

BDT- based selection focusing on background rejection

MicroBooNE Pubic NOTE - 1102

More challenging backgrounds

Exclusive photon LEE analysis: expanding NCA $\rightarrow 1\gamma$

Different event reconstruction:

- Pandora 2D (old)
- Wirecell 3D (new)

Orthogonal selection:

- nearly double statistics.
- Expands $1\gamma 1p$ to $1\gamma Np$

New analysis improves efficiency and purity in $1\gamma 0p$ channel

Target two-dimensional search in Op / Np topologies.

Result coming soon! MicroBooNE Public Note 1104

Exclusive photon LEE analyses – e⁺e⁻ from BSM

Numerous BSM particles decay to e+e-. The predicted colinear electron pair can look like single photon, entering MiniBooNE's LEE

Inclusive photon LEE selection can be used as the pre-selection for this exclusive final state.

Heavy Neutral Leptons Dark Neutrinos $\underbrace{\mathcal{K}}_{N} = \left\{ \underbrace{\mathcal{K}}_{e}^{V}, \underbrace{\mathcal{K}}_{e}^{V},$

Ballett Pascoli Ross-Lonergan JHEP 2017 Kelly Machado PRD 2021 Bertuzzo Jana Machado Zukanovich PRL 2018, PLB 2019 Arguelles Hostert Tsai PRL 2019 Ballett Pascoli Ross-Lonergan PRD 2019 Ballett Hostert Pascoli PRD 2020

Phys. Rev. D 108, 052010

Delayed arrival of heavy BSM particle Vs. prompt neutrinos.

Time-of-flight offers a powerful handle for rejecting SM neutrino background.

Details see Dante Totani's talk on Tuesday afternoon session Several ongoing BSM searches in MicroBooNE focus on e⁺e⁻ final states. e.g <u>arxiv:2310.07660</u>

These analyses will also help provide constraints to photon LEE analysis

Inclusive photon LEE status

Number of Tracks

