Status of the Short-Baseline Near Detector at Fermilab

Rodrigo Alvarez*, on behalf of the SBND collaboration

<u>*rodrigo.alvarez@ciemat.es</u>

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

The SBN program

Located in Fermilab (USA), consists of 3 LArTPC \rightarrow experiments along the booster neutrino beam (BNB):

ICARUS, MicroBooNE, SBND

- Aims to resolve the electron-like event excess seen by \rightarrow LSND and MiniBooNE.
- Same neutrino beam and detector technology will \rightarrow constrain systematic uncertainties to the %-level.

18/07/2024

Fermilab Annu. Rev. Nucl. Part. Sci.69:363-87 **ICARUS MicroBooNE** SBND **Booster neutrino** beam (BNB) 2021-ongoing 2015-2021 Commissioning ongoing L = 600 mL = 468 mL = 110 m**〈E〉**, ~ 0.8 GeV M_{active} = 476 ton M_{active} = 89 ton M_{active}= 112 ton m 000

Detector status

TPC placed into the cryostat,

April 25, 2023

Ramp up to nominal

TPC voltage July 2024

North and East CRT modules installed

April 2024

LAr filling completed March 2024

Rodrigo Alvarez-Garrote

18/07/2024

Detector status

18/07/2024

LArTPCs working principle

- → Charged particles produce ionization electrons and scintillation photons inside the TPC.
- → Photon sensors measure the interaction time t_0 with ns precision.
- → Electric field drifts e⁻ towards anode plane.
- → Wire planes(or other readouts) detect the e⁻ producing 3D mm-level resolution images.

2 TPC volumes

- → Cathode in the middle separates in two TPCs the active volume: 2x5x4 m³ each
- mm level resolution of the event, precise calorimetry & particle ID (Bethe-Bloch equation)
- → Continuous LAr purifying system to prevent charge (and light) loss (2m drift).

B. Abi et al 2020 JINST 15 P12004

TPC wires close-up

- → LAr filling completed in March.
- → Commissioning efforts ongoing.
- → Low TPC intrinsic noise ~2 ADC counts
- → Detector has been operating at nominal drift field (100 kV) for the past few weeks!

Early data: TPC reconstruction

Example of the reconstruction workflow from the raw unfiltered signals...

... to the 3D reconstructed objects after noise filtering and 2D-deconvolution

CRT scintillator strip with wavelength shifting fibres in each side

Cosmic Ray Tagger system (CRT)

- → CRT walls surround the cryostat with ~ 4π coverage. They are composed of scintillator panels with SiPMs on the sides.
- → Provides discrimination to backgrounds from cosmic rays.
- Precise timing (ns) and topology of the event allows for selection of calibration samples.
- → All but top CRT planes installed and calibrated.

Photon Detection system (PDS)

- → Composed by 192 X-ARAPUCAs and 120 PMTs.
- → Located behind the TPC wire planes.
- → Provides triggering, particle ID, complementary energy reconstruction, background rejection...
- → Early PMT Gain equalization performed.
- → More details on SBND trigger system in <u>tomorrow's</u> <u>talk by Tereza Kroupova</u>!

18/07/2024

TPB coated foils in the cathode plane

PDS sensors behind the wire planes

→ Significant effort in R&D for future LAr experiments. 192 X-ARAPUCA sensors will be tested (DUNE-PDS).

Photon Detection system (PDS)

- → Composed by 192 X-ARAPUCAs and 120 PMTs.
- → Located behind the TPC wire planes.
- → Provides triggering, particle ID, complementary energy reconstruction, background rejection...
- → Early PMT Gain equalization performed.
- → More details on SBND trigger system in <u>tomorrow's</u> <u>talk by Tereza Kroupova</u>!

TPB coated foils in the cathode plane

PDS sensors behind the wire planes

→ Significant effort in R&D for future LAr experiments. 192 X-ARAPUCA sensors will be tested (DUNE-PDS).

SBND Photon Detection System

- → Coated sensors can see both VUV (direct) and visible (reflected) light. Uncoated are sensitive to only vis light.
- → Using only PDS information, we can estimate the 3D vertex of the interaction.
- → Correcting for photons and neutrino ToF allows us to resolve the BNB bucket structure with O(ns) resolution -> key to search for BSM long lived particles.
- → Paper describing simulation, reconstruction and the expected performance of the PDS out: <u>arxiv 2406.07514</u>.

Physics at SBND: v-argon cross section

- → SBND total dataset for a expected exposure of 3-year/1e21 POT will have O(10M) neutrino events.
- → More than 7k neutrino events per day!
- → World leading statistics for many processes.
- → Don't miss <u>Rhiannon Jones</u> poster this evening!

Rodrigo Alvarez-Garrote

Physics at SBND: sterile searches

- → Low energy excess in electron-like events reported by MiniBooNE and LSND collaborations.
- → Could be explained by addition of light sterile extra neutrino flavours
- \rightarrow The SBN program will test this hypothesis in the eV scale.
- → Near and far detectors -> further constrain systematic errors.
- → Multiple detectors enables searches in both appearance and disappearance channels.

Expected SBN-3 year sensitivity to a light sterile neutrino.

Phys. Rev. Lett. 121, 221801

Rodrigo Alvarez-Garrote

Physics at SBND: more BSM searches

- → The BNB can produce BSM particles from different sources: charged & neutral mesons, SM neutrinos, proton bremsstrahlung
- → Broad BSM program:
 - Search for long lived particles between BNB buckets (no sm neutrino backgrounds).
 - Distinctive topologies can also be exploited.
- → More details in <u>liaoyang Li talk at the BSM session</u>.

18/07/2024

Physics at SBND: PRISM

- → SBND is sensitive to the angular dependence of the flux thanks to its proximity to the BNB target (110 m).
- → Slicing the detector in angular sections, energy and total number of events vary.
- → Only depends on the angle.
- → Further constraints systematic uncertainties.

18/07/2024

Physics at SBND: PRISM

- → SBND is sensitive to the angular dependence of the flux thanks to its proximity to the BNB target (110 m).
- → Slicing the detector in angular sections, energy and total number of events vary.
- → Only depends on the angle.
- → Further constraints systematic uncertainties.
- → Exploiting this feature, SBND might be able to test lepton flavor violation (P. Machado et al).

Summary

- → SBND detector has been filled with LAr and is already taking data, commission efforts ongoing.
- → SBND will take millions of neutrino interactions in the following years. World-leading statistics for many neutrino-argon processes and a rich physics program.
- → As a part of the SBN program, it will explore the LSND and MiniBooNE anomalies parameter space with ~5 sigma.
- → We expect physics quality data runs to start in fall 2024, as the BNB re-starts operations.
- → Stay tuned for exciting results in the coming years!

Thank you for your attention! Děkujeme za pozornost!

More installation milestones

TPC moved to SBN-ND December 1, 2022

First CRT wall installed

May 18, 2023

HV feedthrough installed and cryostat closed

July 20, 2023

Rodrigo Alvarez-Garrote

Light production in SBND

VUV Light

- Directly produced in LAr volume
- Rayleigh scattering length ~1 m
- TPB & P-Terphenyl (pTP) coating of PDS sensors

Nuclear Science Symposium (pp. 2228-2233), 2008

Visible Light

- Re-emitted by TPB foils in the cathode plane
- Rayleigh scattering length ~20 m

TPB emission spectra

Eur.Phys.J.C 82 (2022) 5, 442

PDS: Photomultiplier Tubes

- → 120 total 8" Hamamatsu R5912 PMTs
 - 96 TPB coated PMTs (VUV +visible light)
 - 24 uncoated PMTs (visible only)
- → 500 MHz CAEN readout.
- PMT system already tested and characterized by <u>CCM experiment</u>
- → Used for trigger building.

Left & right: uncoated and coated PMTs installed in PDS Box

PDS: X-ARAPUCAs

SiPMs	WLS Bar	Filter	Modules in SBND
SensL MICROFC-30050-SMT	Eljen 286	pTP coated 400 nm cutoff	88
SensL MICROFC-30050-SMT	Eljen 280	450 nm cutoff	88
НРК 6050-VE	Glass to power B.	pTP coated 400 nm cutoff	6
HPK-VE 6050-VE	Glass to power G.	450 nm cutoff	6
HPK 6050-HS (↓bias,↑PDE)	Glass to power B.	pTP coated 400 nm cutoff	2
HPK-HS 6050-HS (↓bias,↑PDE)	Glass to power G.	450 nm cutoff	2

SBND X-ARAPAPUCA configurations

- → New scalable technology under development.
- Photons get trapped inside the module, increasing collection area. Side SiPMs collect the photons.
- Cut-offs allow for light source discrimination (450nm filter lets only visible light through)
- → CAEN readouts: 12-bit / 62.5 MHz
- → Important R&D for future experiments (DUNE PDS is only X-ARAPUCA based).

X-ARAPUCA operating principle. Nucl. Instrum. Meth. A, 985 (2021)

18/07/2024

Left: SBND X-ARAPUCA mechanical scheme. Right: mounted module

Liquid argon scintillation light

