CLOUD

The first reactor antineutrino experiment using the novel LiquidO detection technology

Diana Navas Nicolás On behalf of the CLOUD collaboration

20 July 2024

ichep2024.org

42nd International Conference on High Energy Physics 18-24 July 2024 · Prague · Czech Republic

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Welcome back to Chooz...

ICHEP 2024 CLOUD: the first reactor antineutrino experiment using the novel LiquidO detection technology

Chooz

FRANCE

SSEDF

Baseline: ≥30 m (Ultra Near Detector site @ Chooz)

RE **UK Research** and Innovation

Monitor nuclear reactors with neutrinos

Not covered in this talk

The CLOUD experiment is the fundamental physics extension of the AntiMatter-OTech innovation project

Neutrino fundamental research

- CLOUD-I: reactor antineutrinos
- CLOUD-II: solar neutrinos detection demonstrator
- CLOUD-III: geoneutrinos detection demonstrator

Nuclear power plant site

UND

Ultra Near Detector ~ 35 m from reactor core

- ★ Operate on surface
- ★ Minimum shielding: detector as compact as possible
	- Goal S/BG>100? -> to be demonstated

The detector

IGLOO [~3mwe]

- Concrete bunker
- DC's iron steel shield (15cm thick)

Water Pool [20,40]cm thick and/or PE tank [10,20] cm 4π shield & neutron moderator

ARMOUR (or outer-detector) [~0.5m thickness]

- transparent scintillator (LAB + PPO + Bis-MSB)
- ≤180 DC-PMTs & highly reflecting walls
- designed light yield ≥400pe/MeV

The detector

LiquidO: new detection approach

Transparent: Today's technology Topology information washed out

ICHEP 2024 CLOUD: the first reactor antineutrino experiment using the novel LiquidO detection technology 1999 1999

Light clustering

LiquidO: new detection approa[ch](https://doi.org/10.1038/s42005-021-00763-5)

ICHEP 2024 CLOUD: the first reactor antineutrino experiment using the novel Liquid

Innovative dete[ction tec](https://arxiv.org/pdf/1908.03334)hnique

Opaque scintillator

- Originally using NoWaSH [\(NW\) \(N](https://arxiv.org/pdf/2406.13054)ew opaque Wax Scintillator, Heidelberg)
- ★ Linear Alkyl Benzene (~80 wt.%) + PPO (~0.3 wt.%) + Paraffin Wax (~20 wt.%)

arXiv:1908.03334

- For CLOUD the paraffin concentration will be reduced by an order of magnitude to just \sim 2 wt.%.
- LiquidO R&D extensive field: new μCrystal scintillators arXiv:1807.00628, water-based opaque scintillator arXiv:2406.13054, emulsion…(under study)
- Maximal light fibers
- Fast time reso
- Excellent vert

Neutrino fundamental research

- CLOUD-I: reactor neutrinos
- CLOUD-II: solar neutrinos
- CLOUD-III: geoneutrinos

- Goal 1: LiquidO technology ultimate demonstration
- Goal 2: Most precise reactor \bar{v}_e flux measurement <1%, U/Pu composition

But CLOUD will be on surface close to the reactor

• IBD interactions

CLOUD-I: particle identification

- \star Discrimination of individual low energy e^{\star} , e^{\star} and γ events
- ★ Matter/Antimatter separation
- ★ Powerful Background Rejection

Essential for CLOUD

- Goal 1: LiquidO technology ultimate demonstration
- Goal 2: Most precise reactor \bar{v}_e flux measurement <1%, U/Pu composition

- ≥10,000 IBD \bar{v}_e interactions per day and 10 tons [≥3M interactions/year]
- LiquidO can improve ≥3x today's BG control (PID + vertex precision)
- S/BG >100 with Reactor-ON (unprecedented)
-

• IBD interactions

- Goal 1: LiquidO technology ultimate demonstration
- Goal 2: Most precise reactor \bar{v}_e flux measurement <1%, U/Pu composition

- ≥10,000 IBD \bar{v}_e interactions per day and 10 tons [≥3M interactions/year]
- LiquidO can improve ≥3x today's BG control (PID + vertex precision)
- S/BG >100 with Reactor-ON (unprecedented)
-

 \star

 \bullet

• IBD interactions

Data / MC (Shape-Only)

- \star Electron elastic scattering ~5,000 \bar{v}_e per day for 10 tons ID
- ★ Challenge: Isolate electrons Require:
	- Electron classification
	- Fiducial volume
	-

• $\bar{v}_e + e^- \rightarrow \bar{v}_e + e^-$

• Higher energies –> reduction of the detected rate \star Probe of $\sin^2 \theta_W$ at very low energy using antineutrinos

Neutrino fundamental research

- CLOUD-I: reactor neutrinos
- CLOUD-II: solar neutrinos
- CLOUD-III: geoneutrinos

CLOUD-II: Indium loading

CLOUD-II: Indium loading

- pp $v_e \sim 60$ CC interactions / (ton year)
- α (115In) = 0.26 Bq/g = 8.24 x 1012 **ß** / (ton year) \leftarrow \leftarrow Most important background

Thanks to PID <10% of the signal can be mimic by 115In beta-decay

(prompt-delayed) time coincidence

- Signal: $\tau = 4.76 \ \mu s$
- BG β -decay: uncorrelated events

Demands good energy resolution

Expected S/BG > 100

2. (prompt-delayed) space coincidence

- Signal: sphere < 5mm
- BG β -decay: r^3

3. Delayed energy

- Signal: Total delay energy = 612.6 keV
- $\overline{\text{BG}}\overline{\beta}$ -decay: endpoint = 497.489 keV

CLOUD-II: solar neutrino spectra

- Demonstrator for ppsolar neutrino detection with 115In-tagging
- Solar-pp \sim 25 v_e /year
- Solar-7Be ${\sim}9$ v_e /year
- $115\text{ln} + 14\text{C}$ intrinsic background ~negligible (w/LiquidO)
- Possibility to detect intrinsic reactor neutrinos (β+ decay and E.C. of fission products or reactor structural elements)

CIL STU **EPISODE III**

Neutrino fundamental research

- CLOUD-I: reactor neutrinos
- CLOUD-II: solar neutrinos
- CLOUD-III: geoneutrinos

CLOUD-III: Copper loading

• Electron antineutrino CC with copper nucleus arXiv:2308.04154

 $\bar{v}_e + {}^{63}Cu \rightarrow e^+ + {}^{63}Ni^+$ \rightarrow γ 87 keV [if Ni was excited]

- High abundance (69%)
- Fast delayed coincidence $(\tau = 1.7 \ \mu s)$
- Signature:
	- Prompt positron
	- Delayed gamma, close-by spatially

- Proof of principle for ⁴⁰K geo-neutrinos (extremely challenging topic)
	- Endpoint ⁴⁰K 1.311 MeV

Lower thre

N_v[MeV⁻¹fission⁻¹]

6

5

4

3

 $\overline{\mathbf{2}}$

 $\mathbf{1}$

- see un

SuperChooz

experiment

SUPERCHOOZ

See next talk by Anatael Cak Neutrino Physics session (Saturd https://indico.cern.ch/event/1291157/contribut

SuperCho experimer

UPERCHOOZ

ICHEP 2024 CLOUD: the first reactor antineutrino experiment using the novel Liqu

CLOUD collaboration

CLOUD INTERNATIONAL COLLABORATION

21 institutions in 11 countries

- EDF (France)
- Brookhaven National Laboratory (USA)
- Charles University (Czechia)
- CIEMAT (Spain)
- IJCLab / Université Paris-Saclay (France)
- Imperial College London (UK)
- INFN-Padova (Italy)
- Instituto Superior Técnico (Portugal)
- Johannes Gutenberg Universität Mainz (Germany)
- LP2i / Université de Bordeaux (France)
- Pennsylvania State University (USA)
- Pontifícia Universidade Católica do Rio de Janeiro (Brazil)
- Queen's University (Canada)
- Rutherford Appleton Laboratory (UK)
- Subatech / Nantes Université (France)
- Tohoku University / RCNS (Japan)
- Universidad de Zaragoza (Spain)
- Universidade Estadual de Londrina (Brazil)
- University of California Irvine (USA)
- University of Michigan (USA)
	- University of Sussex (UK)

What to remember?

- CLOUD demonstrator for LiquidO's detection capabilities
- CLOUD-I [AntiMatter-Otech funded]
	- Most precise absolute antineutrino flux measurement
- CLOUD-II and CLOUD-III: under feasibility study
	- Solar neutrino with new indium-loaded opaque scintillator
	- Reactor flux at low energies with new copper-loaded opaque scintillator + ⁴⁰K geoneutrinos
- Cutting-edge neutrino physics continue to be done with reactor and solar neutrinos

Thank you very much!

Back-up

Extra: neutrinos from reactors?

- v_e from the β + decay and E.C. of Fission Products
	- The FP yields of these nuclides are as small as the order of 10 $^{-7}$ [fission $^{-1}$].
- v_e from the β^+ decay and E.C of Structural Elements
	- Pressure vessel, control rods, coolants, cladding tubes exposed to high neutron flux

- 10-ton detector is too small
- Unless prediction is wrong?
- What else could we measure?

Expected neutrino spectra in CLOUD

Demonstrator for future SuperChooz experiment!

Copper loading

Copper loading

Mini-e⁻ setup

Coincidence between 2 PMT triggers is done directly by wavecatcher

Light Confinement Demonstration: Transparent vs Opaque

Light Confinement Demonstration: Transparent vs Opaque

- ★ NW at 40℃: almost as transparent as usual LAB+PPO LS (less light due to 20% paraffine)
- LAB+PPO (3g/L): amount of light increased
- ★ LAB: more light due to scintillation
- ★ Water: Cherenkov

Light Confinement Demonstration: Transparent vs Opaque

- ★ NW at 40℃: almost as transparent as usual LAB+PPO LS (less light due to 20% paraffine)
- ★ NW at 5℃: opaque
- ★ Faster collection and better light confinement in the opaque mode

Signal reconstruction

• WaveCatcher + RecoZOR

MINI-II results

LiquidO's timing Potential: Cherenkov vs Scintillation

Transparent media regime

- ★ Liquid scintillator: LAB alone (slow)
- Water data allows confirmation of the Cherenkov peak time position
- Remarkable separation using only timing
- ★ Cherenkov light production threshold

Mini-e⁻ prototype results

Light Confinement Demonstration

Publication in preparation!!

ICHEP 2024 CLOUD: the first reactor antineutrino experiment using the novel LiquidO detection technology 100 100 100 100 100

Gamma vs e- discrimination

- 1-cm-pitch lattice running along the z-axis
- Probability of misidentifying a γ as an e⁻ vs. the efficiency of selecting e⁻
- mean scattering length λ s of either 1 mm or 5 mm
- photon detection efficiency ϵ of 3% (fibre trapping efficiency (~10%) and SiPM QE (~50%)
- The gray curve shows the probability of misidentifying a 2 MeV γ as an e[−] is estimated to be at the 10[−]² level with an efficiency of 87% for λs=5 mm.

Wide physics potential

FROM MEV TO MULTIMEV FROM MULTIMEV TO GEV

Solar Neutrinos @CLOUD-II

Number of solar v_e in AMoTech-¹¹⁵In (5 tons InLS (10%¹¹⁵In), 30 m)

Signal = 2.62 $\times10^{27}$ atoms ¹¹⁵ln × (3.15 $\times10^{8}$)s × v -flux × cross-section × Pee

• Solar Fluxes

http://www.sns.ias.edu/~jnb/SNdata/ sndata.html#hepspec

-
- 115In cross-section Survival Probability Pee

Channel with most complex patter is the most discriminating one

ONLY 5.6% OF THE SIGNAL CAN BE MIMIC BY 115In BETA-DECAY

Backgrounds

Accidental Coincidences (combinatory) + Radiogenics + Cosmogenics (Neutron Rain)

Reactor flux measurement

Precise measurement of the reactor antineutrino flux

 $\langle \sigma_f \rangle$ « total reactor neutrino integrated flux

Double Chooz (DC): for the first time, precision below 1%

Differential eES x-section

For each antineutrino interaction with a certain energy E_v , the resulting recoil electron could have a range of energies from 0 MeV to $(T_e)_{\rm max} = E_{\rm v} - \frac{1}{\frac{2}{m} + \frac{1}{E}}$ m_{e} ' E_{ν}

$$
\frac{d\sigma}{dE_{\nu}dT_{e}} = \frac{\sigma_{0}}{m_{e}} \left[g_{L}^{2} + g_{R}^{2} \left(1 - \frac{T_{e}}{E_{\nu}} \right)^{2} - g_{L}g_{R} \frac{m_{e}T_{e}}{E_{\nu}^{2}} \right]
$$

$$
\sigma_0 = \frac{2 G_F^2 m_e^2}{\pi} \simeq 88.06 \times 10^{-46} \text{cm}^2
$$

$$
g_{L}(\bar{v}_{e}) = \sin^{2} \theta_{W} = 0.2387,
$$

\n
$$
g_{R}(\bar{v}_{e}) = \sin^{2} \theta_{W} + \frac{1}{2} = 0.7387
$$

\n
$$
g_{L}(v_{e}) = \sin^{2} \theta_{W} + \frac{1}{2} = 0.7387,
$$

\n
$$
g_{R}(v_{e}) = \sin^{2} \theta_{W} = 0.2387
$$

Antineutrino ES is dominated by NC, neutrino ES by CC

Today's challenge

Elastic Scattering

- no PID (e- vs **β**-)
- no coincidence
- Heaviside functions from monoenergetic reactions
- Indistinguishable β^- from natural radioactivity
- Need to have ultraradiopure experiments (Borexino \sim 10^{-20} g/g)

Scalability

- No showstoppers foreseen when scaling LiquidO to \sim 10 ktons:
	- Invaluable experience from NOVA
	- Key difference: avoid light losses due to reflection inside the cells - Key difference: avoid light losses gric losses due to reflection inside the cells
-

In NOvA the efficiency of light hitting the fibre is ~12%. For LiquidO we expect > 90%

• A NOvA-sized LiquidO would achieve at least 100 PEs/MeV with today's technology→ already excellent for MeV physics

− No showstoppers for the seen when scaling LiquidO to ~10 ktons:: 10 ktons::

- Rough cost expected to be comparable to NOVA FD ed to be comparable to nov∧ i D
- Other advantages compared to other detectors:
	- Room temperature operation (no need for cryostat) - Room temperature operation (no need for cryostat)
	- Self-shielding detector tor detector detector and self-shielding detector \mathcal{S}

LiquidO beam events

