CLOUD

The first reactor antineutrino experiment using the novel LiquidO detection technology

Diana Navas Nicolás On behalf of the CLOUD collaboration

20 July 2024

42nd International Conference on High Energy Physics 18-24 July 2024 Prague Czech Republic

: L 🌒 U D

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Welcome back to Chooz...

ICHEP 2024

CLOUD: the first reactor antineutrino experiment using the novel LiquidO detection technology

Chooz

FRANCE

Baseline: ≥**30 m (Ultra Near Detector** site @ Chooz)

ICHEP 2024

UK Research and Innovation

Monitor nuclear reactors with neutrinos

Not covered in this talk

ICHEP 2024

The CLOUD experiment is the fundamental physics extension of the AntiMatter-OTech innovation project

Neutrino fundamental research

- CLOUD-I: reactor antineutrinos
- CLOUD-II: solar neutrinos detection demonstrator
- CLOUD-III: geoneutrinos detection demonstrator

ICHEP 2024

Nuclear power plant site

UND

Ultra Near Detector ~ 35 m from reactor core

- ★ Operate on surface
- ★ Minimum shielding: detector as compact as possible
 - Goal S/BG>100? -> to be demonstated

The detector

IGLOO [~3mwe]

- Concrete bunker
- DC's iron steel shield (15cm thick)

Water Pool [20,40]cm thick and/or PE tank [10,20] cm 4π shield & neutron moderator

ARMOUR (or outer-detector) [~0.5m thickness]

- transparent scintillator (LAB + PPO + Bis-MSB)
- ≤180 DC-PMTs & highly reflecting walls
- designed light yield ≥400pe/MeV

The detector

ICHEP 2024

LiquidO: new detection approach

Transparent: Today's technology Topology information washed out

ICHEP 2024

CLOUD: the first reactor antineutrino experiment using the novel LiquidO detection technology

Light clustering

LiquidO: new detection approach

ICHEP 2024

Innovative detection technique

Opaque scintillator

- ★ Originally using NoWaSH (NW) (New opaque Wax Scintillator, Heidelberg)
- ★ Linear Alkyl Benzene (~80 wt.%) + PPO (~0.3 wt.%) + Paraffin Wax (~20 wt.%) <u>arXiv:1908.03334</u>
- ★ For CLOUD the paraffin concentration will be reduced by an order of magnitude to just ~2 wt.%.
- LiquidO R&D extensive field: new μCrystal scintillators <u>arXiv:1807.00628</u>, water-based opaque scintillator <u>arXiv:2406.13054</u>, emulsion...(under study)

- ★ Maximal light collection by a dense array of WLS fibers
- ★ Fast time resolution (electronics + SiPMs) (< 1 ns)
- ★ Excellent vertex resolution (mm scale)

Neutrino fundamental research

- CLOUD-I: reactor neutrinos
- CLOUD-II: solar neutrinos
- CLOUD-III: geoneutrinos

- Goal 1: LiquidO technology ultimate demonstration
- Goal 2: Most precise reactor $ar{
 u}_{e}$ flux measurement <1%, U/Pu composition

<u>Nat. Phys. 16, 558–564 (2020)</u>

But CLOUD will be on surface close to the reactor • IBD interaction: $\bar{\nu}_e + p \rightarrow e^+ + n$

Nat. Phys. 16, 558-564 (2020)

CLOUD-I: particle identification

- ★ Discrimination of individual low energy e^+ , e^- and γ events
- ★ Matter/Antimatter separation
- ★ Powerful Background Rejection

Essential for CLOUD

- Goal 1: LiquidO technology ultimate demonstration
- Goal 2: Most precise reactor $ar{
 u}_{e}$ flux measurement <1%, U/Pu composition

• IBD interaction: $\overline{\nu}_e + p \rightarrow e^+ + n$

- ★ ≥10,000 IBD $\overline{\nu}_e$ interactions per day and 10 tons [≥3M interactions/year]
- ★ LiquidO can improve ≥3x today's BG control (PID + vertex precision)
- ★ S/BG >100 with Reactor-ON (unprecedented)

ICHEP 2024

- Goal 1: LiquidO technology ultimate demonstration
- Goal 2: Most precise reactor $ar{
 u}_{e}$ flux measurement <1%, U/Pu composition

- ★ ≥10,000 IBD \overline{v}_e interactions per day and 10 tons [≥3M interactions/year]
- ★ LiquidO can improve ≥3x today's BG control (PID + vertex precision)
- ★ S/BG >100 with Reactor-ON (unprecedented)

• IBD interaction: $\overline{\nu}_e + p \rightarrow e^+ + n$

- \star S/BG >1 with Reactor-OFF (unprecedented)
- Goal 3: Accurate monitoring reactor ON-OFF-ON transitions – Unique information for reactor prediction model validation

ICHEP 2024

- $\star~$ Electron elastic scattering ~5,000 $\overline{\nu}_e$ per day for 10 tons ID
- ★ Challenge: Isolate electrons Require:
 - Electron classification
 - Fiducial volume
 - Higher energies -> reduction of the detected rate

• $\bar{\nu}_e + e^- \rightarrow \bar{\nu}_e + e^-$

 \star Probe of $\sin^2 \theta_W$ at very low energy using antineutrinos

Neutrino fundamental research

- CLOUD-I: reactor neutrinos
- CLOUD-II: solar neutrinos
- CLOUD-III: geoneutrinos

ICHEP 2024

CLOUD-II: Indium loading

ICHEP 2024

CLOUD-II: Indium loading

- pp $\nu_e \sim 60$ CC interactions / (ton year)
- α (¹¹⁵In) = 0.26 Bq/g = 8.24 x 10¹² β / (ton year) \leftarrow Most important background

Thanks to PID <10% of the signal can be mimic by ¹¹⁵In beta-decay

1. (prompt-delayed) time coincidence

- Signal: $\tau = 4,76 \, \mu s^2$
- BG β -decay: uncorrelated events

Expected S/BG > 100

Demands good energy resolution

2. (prompt-delayed) space coincidence

- Signal: sphere < 5mm
- BG β -decay: r³

3. Delayed energy

- Signal: Total delay energy = 612.6 keV
- BG β -decay: endpoint = 497.489 keV

CLOUD-II: solar neutrino spectra

- Demonstrator for ppsolar neutrino detection with ¹¹⁵In-tagging
- Solar-pp ~25 **v_e**/year
- Solar-7Be ~9 **v_e/year**
- ¹¹⁵In + ¹⁴C intrinsic background ~negligible (w/LiquidO)
- Possibility to detect intrinsic reactor neutrinos (β+ decay and E.C. of fission products or reactor structural elements)

Neutrino fundamental research

- CLOUD-I: reactor neutrinos
- CLOUD-II: solar neutrinos
- CLOUD-III: geoneutrinos

ICHEP 2024

CLOUD-III: Copper loading

• Electron antineutrino CC with copper nucleus <u>arXiv:2308.04154</u>

 $\bar{\nu}_{e}$ + ⁶³Cu \rightarrow e⁺ + ⁶³Ni^{*} γ 87 keV [if Ni was excited]

- High abundance (69%)
- Fast delayed coincidence (τ = 1.7 μs)
- Signature:
 - Prompt positron
 - Delayed gamma, close-by spatially

- **Proof of principle for** ⁴⁰K **geo-neutrinos** (extremely challenging topic)
 - Endpoint ⁴⁰K 1.311 MeV

- Lower threshold (1.2 MeV, below usual 1.8 MeV)
 - see unmeasured part of reactor spectrum

SuperChooz

experiment

SUPERCHOOZ

ICHEP 2024

CLOUD: the first reactor antineutrino experiment using the novel LiquidO detection technology

24

See next talk by Anatael Cabrera Neutrino Physics session (Saturday 20th) <u>https://indico.cern.ch/event/1291157/contributions/5904064/</u>

SuperChooz

experiment

SUPERCHOOZ

ICHEP 2024

CLOUD collaboration

CLOUD INTERNATIONAL COLLABORATION

21 institutions in 11 countries

- EDF (France)
- Brookhaven National Laboratory (USA)
- Charles University (Czechia)
- CIEMAT (Spain)
- IJCLab / Université Paris-Saclay (France)
- Imperial College London (UK)
- INFN-Padova (Italy)
- Instituto Superior Técnico (Portugal)
- Johannes Gutenberg Universität Mainz (Germany)
- LP2i / Université de Bordeaux (France)
- Pennsylvania State University (USA)
- Pontifícia Universidade Católica do Rio de Janeiro (Brazil)
- Queen's University (Canada)
- Rutherford Appleton Laboratory (UK)
- Subatech / Nantes Université (France)
- Tohoku University / RCNS (Japan)
- Universidad de Zaragoza (Spain)
- Universidade Estadual de Londrina (Brazil)
- University of California Irvine (USA)
- University of Michigan (USA)
 - University of Sussex (UK)

What to remember?

- CLOUD demonstrator for LiquidO's detection capabilities
- CLOUD-I [AntiMatter-Otech funded]
 - Most precise absolute antineutrino flux measurement
- CLOUD-II and CLOUD-III: under feasibility study
 - Solar neutrino with new indium-loaded opaque scintillator
 - Reactor flux at low energies with new copper-loaded opaque scintillator + ⁴⁰K geoneutrinos
- Cutting-edge neutrino physics continue to be done with reactor and solar neutrinos

Thank you very much!

Back-up

ICHEP 2024

Extra: neutrinos from reactors?

ICHEP 2024

- ν_e from the β^+ decay and E.C. of Fission Products
 - The FP yields of these nuclides are as small as the order of 10⁻⁷ [fission⁻¹].
- ν_e from the $\beta^{\scriptscriptstyle +}$ decay and E.C of Structural Elements
 - Pressure vessel, control rods, coolants, cladding tubes exposed to high neutron flux

- 10-ton detector is too small
- Unless prediction is wrong?
- What else could we measure?

Expected neutrino spectra in CLOUD

Demonstrator for future SuperChooz experiment!

Plot uses LENS background study for CLOUD

ICHEP 2024

Copper loading

Copper loading

ICHEP 2024

Mini-e⁻ setup

Coincidence between 2 PMT triggers is done directly by wavecatcher

ICHEP 2024

CLOUD: the first reactor antineutrino experiment using the novel LiquidO detection technology

33

Experimental validation

Light Confinement Demonstration: Transparent vs Opaque

Experimental validation

Light Confinement Demonstration: Transparent vs Opaque

- ★ NW at 40°C: almost as transparent as usual LAB+PPO LS (less light due to 20% paraffine)
- ★ LAB+PPO (3g/L): amount of light increased
- ★ LAB: more light due to scintillation
- ★ Water: Cherenkov

Experimental validation

Light Confinement Demonstration: Transparent vs Opaque

- ★ NW at 40°C: almost as transparent as usual LAB+PPO LS (less light due to 20% paraffine)
- ★ NW at 5°C: opaque
- ★ Faster collection and better light confinement in the opaque mode

NW 5°C

NW 20°C NW 25°C

NW 30°C NW 35°C - NW 40°C

Signal reconstruction

• WaveCatcher + RecoZOR

MINI-II results

LIQUIDO'S TIMING POTENTIAL: CHERENKOV VS SCINTILLATION

TRANSPARENT MEDIA REGIME

- ★ Liquid scintillator: LAB alone (slow)
- ★ Water data allows confirmation of the Cherenkov peak time position
- ★ Remarkable separation using only timing
- ★ Cherenkov light production threshold

Mini-e⁻ prototype results

Light Confinement Demonstration

Publication in preparation!!

Experimental validation

ICHEP 2024

Gamma vs e- discrimination

- 1-cm-pitch lattice running along the z-axis
- Probability of misidentifying a γ as an e^ vs. the efficiency of selecting e^
- mean scattering length λ s of either 1 mm or 5 mm
- photon detection efficiency ϵ of 3% (fibre trapping efficiency (~10%) and SiPM QE (~50%)
- The gray curve shows the probability of misidentifying a 2 MeV γ as an e⁻ is estimated to be at the 10⁻² level with an efficiency of 87% for λ s=5 mm.

Wide physics potential

FROM MEV TO MULTIMEV

FROM MULTIMEV TO GEV

ICHEP 2024

Solar Neutrinos @CLOUD-II

Number of solar ν_e in AMoTech-¹¹⁵In (5 tons InLS (10%¹¹⁵In), 30 m)

Signal = 2.62×10^{27} atoms ¹¹⁵In × (3.15×10^8)s × ν -flux × cross-section × Pee

• Solar Fluxes

http://www.sns.ias.edu/~jnb/SNdata/ sndata.html#hepspec • ¹¹⁵In cross-section

Survival Probability Pee

	Branch.	Case	Prompt	Delay		Exclusive	Inclusive	BG discrimination
BG (In)	100%				•	100%	100%	-
Signal	51%	al	•		\sim	90%	45.9%	YES
		a2	•			10%	5.1%	PID irreducible
	49%	b1	•	~~	\sim	79%	38.71%	YES
		b2.1	•	•	\sim	10%	4.9%	YES
		b2.2	•	~~		10%	4.9%	YES
		b3	•	•		1%	0.49%	PID irreducible

Channel with most complex patter is the most discriminating one

ONLY 5.6% OF THE SIGNAL CAN BE MIMIC BY ¹¹⁵In BETA-DECAY

Backgrounds

Accidental Coincidences (combinatory) + Radiogenics + Cosmogenics (Neutron Rain)

ICHEP 2024

Reactor flux measurement

Precise measurement of the reactor antineutrino flux

 $\langle \sigma_f \rangle \propto$ total reactor neutrino integrated flux

$\langle \sigma_{\alpha} \rangle(t) = 0$	$\frac{N_{\overline{\nu}e}^{exp}}{\epsilon N_{p}}$	$\left(\frac{W_{th}(t)}{4\pi L^2 \langle E_f \rangle}\right)$	-1 cm ² /fission
	enp	$4\pi L^{-}(E_{f})/$	

Uncertainty (%)	ND (DC)	
Proton Number	0.66	
Thermal Power	0.47	Double Chooz
Detection Eff	0.24	Livetime: 258 days
Background	0.18	Rate: ~800 $\bar{\nu}_e$ /day
Energy per Fission	0.16	
θ_{13} Correction	0.16	
Statistics	0.22	
TOTAL	0.97	

Double Chooz (DC): for the first time, precision below 1%

ICHEP 2024

Differential eES x-section

For each antineutrino interaction with a certain energy E_{ν} , the resulting recoil electron could have a range of energies from 0 MeV to $(T_e)_{max} = E_{\nu} - \frac{1}{\frac{2}{m_e} + \frac{1}{E_{\nu}}}$

$$\frac{d\sigma}{dE_{\nu}dT_{e}} = \frac{\sigma_{0}}{m_{e}} \left[g_{L}^{2} + g_{R}^{2} \left(1 - \frac{T_{e}}{E_{\nu}} \right)^{2} - g_{L}g_{R} \frac{m_{e}T_{e}}{E_{\nu}^{2}} \right]$$

$$\sigma_0 = \frac{2G_F^2 m_e^2}{\pi} \approx 88.06 \times 10^{-46} \text{cm}^2$$

$$g_{L}(\bar{\nu}_{e}) = \sin^{2} \theta_{W} = 0.2387,$$

$$g_{R}(\bar{\nu}_{e}) = \sin^{2} \theta_{W} + \frac{1}{2} = 0.7387$$

$$g_{L}(\nu_{e}) = \sin^{2} \theta_{W} + \frac{1}{2} = 0.7387,$$

$$g_{R}(\nu_{e}) = \sin^{2} \theta_{W} = 0.2387$$

Antineutrino ES is dominated by NC, neutrino ES by CC

ICHEP 2024

Today's challenge

Elastic Scattering

- no PID (e- vs β-)
- no coincidence
- Heaviside functions from monoenergetic reactions
- Indistinguishable β⁻ from natural radioactivity
- Need to have ultraradiopure experiments (Borexino $\sim 10^{-20}$ g/g)

Scalability

- No showstoppers foreseen when scaling LiquidO to ~10 ktons:
 - Invaluable experience from NOVA
 - Key difference: avoid light losses due to reflection inside the cells

In NOvA the efficiency of light hitting the fibre is ~12%. For LiquidO we expect > 90%

- A NOvA-sized LiquidO would achieve at least 100 PEs/MeV with today's technology \rightarrow already excellent for MeV physics
- Rough cost expected to be comparable to NOVA FD
- Other advantages compared to other detectors:
 - Room temperature operation (no need for cryostat)
 - Self-shielding detector

LiquidO beam events

ICHEP 2024